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Introduction

This report documents the results and deliverables from NASA Grant NAG-1-1324,
which began September 1, 1991 and ended December 31, 1994. The technical monitors were
James Reeder and Buddy Poe. The research results have been well documented in journal articles
and conference proceedings papers. Part I includes copies of these publications. In order to give a
better overall view of the project, Part I begins with a summary of the primary conclusions and
accomplishments. Specialized analysis software was developed as part of this project. Part II doc-
uments the use of this software. Part II includes user’s manuals and a description of the files on
the media provided with this report.

It should be noted that although the primary funding for this project was provided by
NASA Langley Research Center, there was also support from two other related projects. One
project “Analysis of New Composite Architectures” was funded by NASA Lewis Research Cen-
ter under NASA Grant NAG3-1270. Dr. Chris Chamis was the technical monitor. The other
project “Thermomechanical Analysis of Carbon-Carbon Composites” was funded by AFOSR
under AFOSR Grant F49620-93-1-0471. Dr. Walter Jones was the technical monitor. The integra-
tion of the efforts in these projects expedited the research in all three projects.



Part 1

Results and Publications

Summary of Conclusions and Accomplishments

The objective of this project was to develop an analysis for predicting the failure of woven
composites and to use the analysis to enhance understanding of their mechanical behavior, espe-
cially the failure process. Woven composites present a formidable analytical challenge. The com-
plex architecture makes routine application of finite element analysis impractical. Accordingly, a
considerable part of this effort concentrated on developing novel analytical methods. In particu-
lar, special finite elements were developed which account for microstructure within a single ele-
ment and global/local analysis methods were developed and evaluated. Use of these analyses
indicated that the behavior of woven composites is complex, but that much can be learned using
these numerical tools on even moderate size workstations. Listed below are the major accom-
plishments and observations from this study. Details can be found in individual papers, which are
included herein.

* For small waviness the engineering moduli can be estimated quite well using rule of
mixtures.

* The degree of waviness affects not only the nominal stress level at which damage ini-
tiates, but also the type of type of damage. For in-plane extension in the zero degree direction, the
initial failure was in the zero degree tow for small waviness and between mats for large waviness.
It should be noted that only mechanical loads were considered. Thermal loads should be included
in a future study.

* Finite thickness (which results in free surface effects) affects both the moduli and stress
distributions. The free surface reduced the moduli. The stress distribution within a unit cell near a
free surface was much different than that for a cell in the interior. The free surface effects only
extended about half a unit cell into the interior (through the thickness) of a specimen. For thin
composites or if failure initiates near the surface, this free surface effect should be considered
when predicting performance.

* The free surface response was essentially independent of total specimen thickness.

* Single- and multi-field macro elements were developed for 2D and 3D analysis. These
elements were very effective in predicting the effect of microstructure on global response. They
were significantly more accurate than the use of homogenized engineering properties and were
able to account for free surface effects.

* Two global/local techniques were developed and evaluated. One was based on exact
compatibility of displacements between the global and local models. The other approximated the
global solution using a few fundamental stress or strain modes. The magnitudes of these modes
were used to scale unit modal solutions, which were then superposed to obtain a local solution.
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The displacement compatibility method was quite accurate except near the global/local boundary,
where severe errors occurred. The modal technique required more effort to implement, but the
errors were relatively small, even near the global/local boundary.

* Severe concentration of the through thickness normal stress occurs in symmetrically
stacked plain weave composites. This is due to the coupling between extension and flexure for a
wavy fiber tow. Shifting of one mat relative to the other before curing so that the stacking is no
longer symmetric drastically reduces this stress concentration.

* A first order progressive failure analysis was developed. The behavior was quite brittle
for in-plane extension. Also, the ultimate strength for a composite with a waviness ratio of 1/3
was less than half of that for one with a waviness ratio of 1/6.

* Software was developed which makes it relatively easy to analyze plain weave compos-
ites of arbitrary waviness subjected to macroscopically constant stress. Only a few parameters
must be specified to generate a finite element model and the required periodic boundary condi-
tions. Because boundary conditions were derived for a 1/32 unit cell model, only modest com-
puter resources are required for moduli and elastic stress distributions.

* Pre- and post-processing software was developed for visualizing deformed models,
stress distributions, and failure zones.

* The global stiffness matrix is very sparse for large three-dimensional models. It is not
unusual for less than ten percent of the profile to be non-zero. For this reason several iterative
solvers were evaluated. ( Iterative solvers can exploit sparseness much better than direct solvers.)
For the largest models studied thus far, which had about 10000 dof, Cholesky decomposition is
faster but requires considerably more memory. The work on iterative solvers will be summarized
in a thesis to be completed using funding from the Aerospace Engineering Department at Texas
A&M. This thesis will be provided to NASA upon completion.

In addition to the research results and the software developed, this grant provided partial or full
funding for several students, which are listed below. The thesis and dissertation for the two stu-
dents who have already graduated were delivered earlier to the technical monitor.

Kyeongsik Woo
Degree: PhD
Date of graduation: August 1993
Title of dissertation: “Stress and Failure Analysis of Textile Composites”

Gopal Kondagunta
Degree: MS
Date of graduation: August 1993
Title of thesis: “Two Dimensional Finite Element Analysis of Homogenization and
Failure in Plain Weave Textile Composites”



Kanthikannan Srirengen
Degree: PhD
Date of graduation: Not graduated yet
Title of dissertation:

Hongbing Wang
Degree: MS
Date of graduation: Not graduated yet
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COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, Vol. 9, 745-756 (1993)

APPLICATION OF ITERATIVE GLOBAL/LOCAL FINITE-
ELEMENT ANALYSIS. PART 1: LINEAR ANALYSIS

JOHN D. WHITCOMB AND KYEONGSIK WOO
Aerospace Engineering Department, Texas A&M University, College Station, TX 77843, U.S.A.

SUMMARY

Iterative globalflocal finite-element stress analysis was used to perform linear analysis of two
configurations with local damage. One was a tubular joint with local debonding; the other was a fibre
matrix unit cell with debonding along part of the interface. The global/local procedure was shown to be
both accurate and efficient for both configurations.

INTRODUCTION

In spite of the advances in computer technology, there is still a need for more computationally
efficient methods for performing stress analysis. One approach which is receiving increasing
attention is global/local finite-element analysis. Such analyses use a coarse global model to
obtain appropriate boundary conditions for a local region where there is a complicated stress
field due to geometry or material property changes. Such analyses can take a variety of forms.
References 1—3 discuss some of the possibilities. The form described herein uses two distinct
meshes (one global and one local), but retains the same level of accuracy as one would obtain
if one was to use a single refined global mesh. The accuracy is retained by using an iterative
procedure to enforce equilibrium and displacement compatibility between the global and local
regions. This procedure was described earlier in Reference 4 and is similar to the procedure
in Reference 5. Although the method was developed from a different prospective, the iterative
global/local technique is closely related to the multigrid and domain decomposition
formulations in References 6—8. In Reference 4 the procedure was tested using simple
configurations. The procedure performed very well for those tests. However, the procedure
needs to be evaluated for complex stress analysis problems.

This paper describes the application of the iterative globalflocal procedure for two
problems: debond growth in an adhesively bonded tubular joint and a fibre/matrix unit cell.
The tubular joint was studied for tension and flexure loads. The unit cell was subjected to
tension load. In the following Sections the theory will be discussed first. Then the
configurations will be described. Finally a few results will be discussed which illustrate the
performance of the globalflocal procedure. To simplify the discussion, only linear analysis will
be discussed in this paper. In Part 2 of this paper the method will be extended to geometrically
non-linear analysis.

ANALYSIS

The following subsections describe the basic theory, the configurations studied, the finite-
element models and the material properties.

0748-8025/93/090745—12$11.00 Received December 1991
© 1993 by John Wiley & Sons, Ltd. Revised January 1993
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746 J. D. WHITCOMB AND K. WOO

Theory

The basic theory for linear global/local analysis was described in Reference 4. The procedure
will be described herein in a more general form which is also applicable to geometric or
material non-linear problems. However, only linear examples will be presented in this paper.
As mentioned earlier, this technique is closely related to multigrid and domain decomposition
methods. Concomitantly, the purpose of this section is to briefly describe the theoretical
aspects of the particular analyses performed and to offer a different perspective on the method.
The following discussion assumes that a direct equation solver is being used.

The finite-element equilibria equations can be expressed as®

S 0y 80 gy F, =0 (1)
v a o
where o;; = stress tensor
€;j = strain tensor
g = nodal displacements
F, =nodal forces
V = volume.

Repeated subscripts indicate summation. Equation (1) is valid for both linear and non-linear
configurations. This equation expresses equilibrium between internally generated and
externally applied forces. It is not convenient to model complex local behaviour in a large
global finite-element mesh. The traditional engineering approach is to solve the global problem
without including local details. Displacements or forces from the global analysis are used as
boundary conditions for a separate detailed analysis of the local, complicated regions. This is
shown schematically in Figure 1 as the downward portion of the iterative loop. The problem
with this engineering approach is that the refined local model is not in equilibrium with the
global model. As described in the following, iteration can be used to enforce equilibrium
between the global and local models.

The lack of equilibrium between a coarse global model and a refined local model is due to
the difference in stiffness of the global and local models in the local region. In fact, modified
material properties could be used in the coarse mesh which would result in the same response
as the refined mesh. Of course, it is generally not practical to determine these modified
properties a priori. However, this interpretation of the globalflocal problem shows that it can
be approached in the same manner as the analysis of structures with local yielding or locking
material response. In particular, the globalflocal method used herein is essentially a non-linear
elasticity analysis implemented using the initial stress method, '® which is really just a modified
Newton—Raphson algorithm. Whether a material is softening or locking with increasing strain
will affect the strategy used to ensure convergence. Because of the similarity between
globalflocal and non-linear elasticity analysis, similar convergence problems can be expected.
More importantly, many of the techniques developed to ensure convergence for non-linear
elasticity are likely be useful in linear globalflocal analysis.

Obviously, refining a mesh locally by just subdividing existing elements decreases the
stiffness of the local region for some modes of deformation. However, in some cases, refining
a mesh might include addition of structural details or local redesign which stiffen the region.
Hence, in practice, the local mesh can be more or less stiff than the global mesh.

Treating the linear global/local problem as a non-linear elasticity problem, one can proceed
as follows. First, the global problem is solved. This involves solving the following equations
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Solve global
problem i
A il /Region A
;: Region B
4
i Global/local
HH boundary
displacements
Local forces 1
Solve local Region C

problem

Figure 1. Schematic diagram of iterative global/local analysis

for qa:

| o2av-r, @
A+B aqu

where regions A and B constitute the entire global mesh (see Figure 1). The displacements g%
from the global analysis are used as boundary conditions for the local mesh (region C). Next,
global residuals are calculated assuming that region B is replaced by region C in the global
model. This is analogous to using a linear stiffness matrix in solving for displacements in a

plasticity analysis, but then using updated constitutive properties to determine residuals. The
residuals are given by

wazg oy 28U gy F, G)
A+C 3G«
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A modified Newton—Raphson procedure was used to eliminate residuals. The equations to
be solved to determine the corrections to the global displacements are

A
e

where d¥./dqg is approximated by 8/ags(fa+s 0ij d€ijfdgo dV], which is just the global mesh
stiffness matrix. For linear and some material non-linear problems, the global stiffness matrix
needs to be assembled and factored only once, regardless of in what place(s) a local analysis
is to be performed.

The next step is to update the global displacements based on solution of equation (4). The
updated boundary displacements are then imposed on the local model and the loop continues
until the residuals are sufficiently small. It is, of course, possible to use over- and under-
relaxation when updating the global displacements. The effect of using variable relaxation on
convergence will be discussed. The relaxation strategy used is described in Reference 11.

AQB: _"I/a (4)

Configurations

This Section will describe the configurations analysed, the meshes used and the material
properties.

Radius = 224.2 mm

Debond

-1y

) -

) ISt 9 15 68 15 WD D §
— |

Debond 1 m

15.24 mm

il

Bonded Tubes Traditional Axisymmetric Finite
Element Analysis

Figure 2. Traditional finite-element modelling for bonded tubes with two debonds
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Figure 2(a) shows two composite tubes which are bonded together. This type of joint is
referred to as a single lap joint. A portion of the tubes has been removed so that the joint
cross-section is visible. The tubes were loaded under axial tension or flexure. The tubes are
assumed to have short axisymmetric debonds at both ends of the bondline. The debond length
is 15-2 mm. Because of the symmetry, an axisymmetric analysis was used for tension loads.
Fully three-dimensional analysis was used for flexural loads.

Figure 2(b) shows a traditional axisymmetric finite-element model, including a close-up of
the debond front. The very thin elements along the bondline model the adhesive layer, which
is 0-15 mm thick. Figure 3(a) shows the globalflocal finite-element meshes for the same
configuration. The global mesh is like the mesh in Figure 2(a) except that there is no extra
refinement around the debonds. The global mesh does contain crude approximations of the
debonds. The local mesh has the same refinement as the crack tip region in Figure 2(a). Eight-
node elements were used for the meshes in Figures 2(a) and 3(a). The element stiffness
coefficients and forces were evaluated using 3 X 3 Gaussian integration. Even though a 2 x 2
integration scheme was used successfully using traditional meshes, the global/local procedure
was not always convergent when such was used. No convergence problems were encountered
using 3 x 3 integration.

Figure 3(b) shows the globalflocal finite-element model for the analysis of flexure loads.
Twenty-node elements with 3 x 3 X 3 integration were used. Two versions of the global mesh
were used in the flexure analysis. One version included a debond and the other did not. This
was to test the performance when the local refinement included major geometry changes (not
just a better assumed solution). The models appear identical before deformation since the only
difference is the duplicate nodes along the debond faces.

Figure 4(a) shows the second configuration analysed: a unit cell containing a single circular
fibre surrounded by an epoxy matrix. The fibre volume ratio for this model is 0-6. Plane strain
analyses were performed for this configuration. Because of symmetry only one fourth of the
unit cell was studied. Two global meshes were used. One has no debond and the other does.
However, until the meshes are deformed, they appear identical to that shown in Figure 4(b).
Figure 4(c) shows the mesh for the case of local fibre/matrix debonding. The debond extends
over a 6-4° segment of the interface. Four-node elements were used for the unit cell analyses.
The element stiffness coefficients and forces were calculated using 2 X 2 integration.

Table I gives the number of nodes, number of elements and storage requirements for the
stiffness matrix for each of the models. The storage requirements are based on profile storage.
The Table shows that the memory requirements were less for the globalflocal analysis than for
the traditional analysis. There was a large difference for the single lap tubular joint for both
the axisymmetric and the three-dimensional models, but not for the unit cell analysis. In
general, it is expected that the savings will increase as the complexity of the problem increases.

The tubes were assumed to be graphitefepoxy with the fibres arranged to give a quasi-
isotropic laminate. Lamina properties from Reference 12 were used. The properties for the
layers were averaged to give properties for a ‘homogeneous transversely isotropic’ laminate.
This procedure is discussed in Reference 9. The resulting axisymmetric material properties are:

E,=1-27%x 10" Pa, Egpp=5-26x 10'° Pa, E,,=5-26x 10! Pa
vro =0°33, vg;=0-305, v, =0-33

Gro=4-48 X 10° Pa, Gg;=2-01 x 10'° Pa, G,,=4-48 x 10° Pa
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on only One Debond
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s-section of Local Mesh
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Figure 3. Globalflocal meshes for tubular joint: (a) axisymmetric globalflocal meshes; (b) 3D globalflocal meshes
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(a) Unit Cell

Crack Tip

Debond

(b) Global F.E. Model (© Local FE. Model

with Damage

Figure 4. Global/local analysis of fibrefmatrix unit cell

Table I. Number of nodes (NN), number of elements (NE)
and profile for finite-element models

NN NE Profile

Axisymmetric single lap model:

Traditional 701 204 99111
Global with debond 397 108 30563
Local (single debond) 191 56 11281
3D single lap model:
Traditional 2723 464 3890946
Global with debond 1499 208 1251921
Global without debond 1447 208 831651
Local 1511 288 1802028
Unit Cell:
Traditional 243 212 17701
Global with debond 166 140 8498
Global without debond 165 140 7871

Local 91 76 6421

751
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The unit cell model used the following material properties (Reference 13):
Fibre:

E=4-137x 10" Pa, v=0-2, G=1:724x 10"' Pa
Matrix:

E=3-447x10° Pa, »=0-34, G=1-276 x 10° Pa

RESULTS AND DISCUSSION

The results for the single lap tubular joint are discussed first, then the unit cell results are
discussed.

Figure 5 shows the error in the mode I and mode II (G; and Gy;) strain energy release rates
against the iteration number for tension load. Herein, the error is defined to be the extent to

25
20 —
15 \\‘ Debond B
:
m S
Q Mode I Y Debond A
d‘: ‘l
10 -
5 —
O l I l I — -l ------------
0 1 2 3 4 5 6

Number of Iterations

Figure 5. Convergence history of strain energy release rates for a single lap joint under axisymmetric tension. Results
shown are for debond B
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which the globalflocal analysis does not match the results from a traditional finite-element
analysis. The percentage error was calculated as

(Gtraditional - Gglobal/local)/Gtradilional x 100

No over- or under-relaxation was used for the results in Figure 5. The Figure shows that the
convergence is very rapid. The error is negligible after only three iterations. Also, note that
if a non-iterative globalflocal solution had been used (which corresponds to iteration
count = 1), the error would have been quite large.

Figure 6 shows the error in Gy and Gi1 against iteration number for flexure loads. When the
global mesh contains a debond the error is very small even for iteration 1. This indicates that
the global mesh had a close approximation of the local region stiffness. If the global mesh does
not contain a debond, the convergence is still quite rapid using variable relaxation. The effect
of fixed as against variable relaxation is discussed later for the fibre—matrix unit cell analysis.

70
60 — without global debond
50
S 1)
B
40 S
o
8
3
o
g
=} [}
£ 30 Mode 11\
o \
=
20 — with global debond
Mode I & If
10
0 I i F T e T
0 1 2 3 4 5 6 7
Number of Iterations

Figure 6. Convergence history of strain energy release rates for a single lap joint under flexure. Global meshes with
and without a debond were used
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Figure 7. Normalized cumulative CPU time for a single lap joint under flexure. Two global meshes were used. One
global mesh modelled the debond; the other did not

Figure 7 shows the normalized cumulative CPU time required against iteration number for
global models with and without a debond. The CPU time for a converged solution is about
the same for both models and is less than for a traditional analysis. The global model without
a debond is actually more efficient in this case than the one with a debond since the memory
requirements are less.

The next configuration analysed was a fibre~matrix unit cell. A global stress analysis was
performed first. This was done using the global mesh shown in Figure 4(b). Based on the stress
analysis results, one can determine the most critical region where preferential interfacial failure
might initiate. Now suppose one needs to know the strain energy release rate that would be
present if a debond did form. In the spirit of globalflocal analysis, one would assume some
initial debond length, develop a local mesh and proceed with the iterative analysis without
changing the global mesh. That is, the global mesh would not contain a debond, but the local
mesh would. Note that at this point the already decomposed global stiffness matrix is available
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from the global stress analysis. Since the cracked local mesh has a very different stiffness from
that of the corresponding region in the global mesh, the approximation of d¥./dgs by the
global stiffness matrix is not very accurate. As shown in Figure 8, this poor approximation
results in very slow convergence if variable relaxation is not used. When variable relaxation
is used, the convergence rate becomes much better. Figure 8 also shows results for the case in

which the global mesh has a debond. Of course, including a debond in the global mesh requires

either anticipation of where a debond will form or modification of the global mesh after
performing the initial analysis. Obviously, one would like to avoid both scenarios. However,
the memory requirements are less for a global/local analysis than for a traditional analysis, and
hence it might be preferred even when the region to be examined in detail is known a priori.

As was the case for the bonded joint problem, the convergence is extremely fast, even without
variable relaxation, when the global mesh has a crude approximation of a debond.

100 o
1 Global Mesh without Debond
Mode I, Fixed Relaxation
80 4 L e Mode 11, Fixed Ralaxation
' s G560 Mode I, Variable Relaxation
' \ QEE88 Mode If, Variable Relaxation
S Global Mesh with Debond
o |

\
Y

aiatA Mode I, Fixed Relaxation
v k Yr¥r v ¥ Mode II, Fixed Relaxation

Percent Error
I

50
Number of Iterations

Figure 8. Convergence of strain energy release rates for debond growth along fibre/matrix interfaces (e =0-005)
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CONCLUSIONS

Iterative globalflocal finite-element stress analysis was used to analyse two configurations: a
bonded tubular joint and a fibre/matrix unit cell. In both cases there was localized damage.
The global/local procedure converged quickly, even without variable relaxation, if the global
mesh contained at least a crude approximation of the damage. When the global mesh did not
contain a crude approximation of the damage, variable relaxation was effective in ensuring
reasonable convergence rates.

Computer memory requirements were less for the globalflocal analyses than for traditional
finite-element analyses. Hence, the globalflocal procedure might be preferable even when the
regions requiring refined analysis are known a priori.
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APPLICATION OF ITERATIVE GLOBAL/LOCAL
FINITE-ELEMENT ANALYSIS.
PART 2: GEOMETRICALLY NON-LINEAR ANALYSIS

JOHN D. WHITCOMB AND KYEONGSIK WOO
Aerospace Engineering Department, Texas A&M University, College Station, TX 77843-3141, U.S.A.

SUMMARY

A geometrically non-linear globalflocal technique was developed and tested. This technique uses separate
global and local finite-element models. Iteration is used to enforce equilibrium between the global and
local models. The results of this initial study suggest that the technique can be used to reduce both
computer memory and CPU requirements.

INTRODUCTION

The term ‘global/local analysis’ is used to describe many different strategies. Part 1 of this
paper described the application of one of these strategies for linear analysis. This second part
of the paper extends the procedure to geometrically non-linear analysis. Although much of the
formulation in Part 1 is applicable herein, there are significant differences. Accordingly, a brief
but complete description of the theory is given, then a few illustrative examples are discussed.

THEORY
The governing geometrically non-linear equilibrium equations can be expressed as

ae,~j
i dV - F,=0 1
SVOLOI 39« )

where g are the unknown nodal displacements, F, are the applied forces and repeated
subscripts indicate summation. This equation expresses equilibrium between the internally
generated and externally applied forces. A total Lagrangian formulation was used, so the
strain—displacement relations are given by!

1 au,- BUJ au, au,
= (L 2
f=3 (ax,- axi | ax; ax,-> @)

The stresses are
aij= Cijki€ri 3)

There are various procedures for solving the non-linear equations in (1). A modified
Newton—Raphson procedure coupled with global/local iteration was used herein.

Figure 1 is a schematic diagram of the globalflocal procedure for the analysis of a butt strap
joint with a debond. The global mesh has two labelled regions. Region A includes the entire
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Figure 1. Non-linear iterative globalflocal strategy

mesh except for the shaded region. Region B includes just the shaded region. Region B includes
the area around the debonds. The global mesh in region B is too coarse for accurate analysis.
The debond might not even be modelled. The local mesh (region C) is a refined idealization
of the shaded region.

The first step in the iterative solution is to solve the global model regions A + B. The non-
linear equations to be solved are

S 0 LU gy Fr=0 @)
A+B  0Qq

Note that the integration is over the entire global model. Boundary displacements from the
shaded region are imposed on the local model, which is then solved. The governing non-linear
equations are

38,‘_,’
ij— dV - F, = 5
R 0 ©)

At this point the local solution is the usual engineering global/local solution. However,
because of the difference in the mesh refinement between regions B and C, the local model
(region C) is not in equilibrium with region A of the global model. Hence, the solution is not
the same as if the local model was actually part of the global model. Satisfaction of equilibrium
requirements can be expressed as

deij deij
\Ira=S a-~—4dV+S 5 U Gy - F=0 6

A 0qa ¢ 7 3q. ©
If fully converged solutions were obtained for the global and local models during this first
global/local iteration, significant residuals . would exist only for the g, along the boundary
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of the shade region. If only partially converged solutions were obtained, residuals would exist
throughout both the global and local models.

Equations (6) will not be satisfied on the first globalflocal iteration. Also, these equations
cannot be solved directly even for linear problems because the equations for regions A and C
are not directly coupled. However a modified Newton—Raphson procedure can he used to
iteratively solve equations (6). In the unmodified Newton—Raphson procedure corrections to
the current estimates of the displacements are obtained by solving

v,
dqs

The updated displacements are then g+ Ag,. For the unmodified Newton—Raphson
procedure we require the tangential stiffness matrix Kr

v, @ dei;
Kp)og= e 9 S y ”dV] 8
(Kt)es 3qs aQ5|:A+cojaqa ®

To form Kr requires that regions A and C be parts of a single mesh. In the modified
Newton—Raphson procedure we use an approximate Kt given by

Agg= V¥ (7)

_ 8 _deij
(Kr)as =5 UMB o 50 dV} ©
This is simply the Kt for the global mesh.

The next step is to update the global model displacements based on an approximate solution
of equation (7). The modifier ‘approximate’ is used because dy/dgg is only approximated. The
updated boundary displacements are then imposed on the local model and the loop continues
until the residuals are sufficiently small. To speed convergence variable relaxation (i.e. scaling
of Agp) is used.?

Even for traditional non-linear finite-element analyses there are many ways to ‘fine-tune’ the
solution strategy to minimize the computational burden. Variable relaxation was mentioned
earlier. Another is to adjust the frequency of updating the tangential stiffness matrix. In
globalflocal analysis there are more opportunities (and responsibilities) for tuning the strategy.
A few different strategies were examined in this study, but determining the optimum strategy
is beyond the scope of this paper.

The strategies examined in this paper can be described with the help of Figure 1. The analysis
begins with solving the global model. Since the global model is non-linear there are three
possibilities for the ‘solution’: (1) a linear solution, (2) an approximate solution obtained after
limited iteration and (3) a converged non-linear solution. If there is significant non-linearity,
use of a linear solution is probably a bad strategy. It is not so clear as to how tightly converged
the global solution must be, since further iterations will occur later in the globalflocal iterative
loop. Next the local model is solved. Again, the ‘solution’ could be one of the three
possibilities discussed above. Regardless of the local solution, the local model boundary forces
FPOUND are used in calculating residuals in the global model. Currently, only a non-iterative
incremental solution is performed for the global model. Also, in the current implementation
Ky for the global model is never updated after determining the initial global solution. The
implicit assumption is that changes in the global displacements are fairly small after the initial
global solution. This assumption makes it particularly unwise to use a linear initial global
solution in the current implementation. Herein, at least a few iterations were used to obtain
a reasonable global solution before proceeding to the globalflocal iterations. This permitted
the solution of highly non-linear problems.
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Table I

Iteration strategy no. * 2 3 4 5 6 7
Initial solution:

Global C C C C B B B

Local C C C B C C B
Global/local iteration:

Global C A A A A A A

Local C C A A C A A

* Not implemented.

Seven possible strategies are listed in the Table I. All but strategy no. I was implemented.
The letters A, B and C refer to the choices in Figure 1.

CONFIGURATIONS

This Section describes the three configurations which were studied: a plate butt strap joint

under tension, a radially compressed laminated plate with a post-buckled sublaminate, and a '

tubular butt strap joint under flexure.

The global and local meshes for the plate butt trap joint are shown in Figure 1. Two
304-8 mm-long composite plates are bonded together. The overlap length is 152-4 mm. The
adherend thickness is 15-2 mm. The joint is assumed to have short through-the-width debonds
at the centre and at the ends of the bondline. The behond length is 7-6 mm. Both the global
and local models include the debond. Because of the symmetry, only half of the joint was
modelled. Eight-node isoparametric elements were used.

Figure 2 shows the axisymmetric global and local meshes of the post-buckled laminated plate
under radial compression. The plate is 100 mm in diameter and 4 mm thick. The sublaminate
thickness is one tenth of the plate thickness and the delamination diameter is 30 mm. Both the
global and local models include the delamination. The thicker line in the local mesh indicates
the debond. Eight-node isoparametric elements were used.

Figure 3 shows the global and local meshes of the tubular butt strap joint under flexural
loads. The internal radius of the tubes is 213 -4 mm. The cross-section dimensions are the same

\

Debond g [~ (b) Local mesh

(a) Global mesh

Figure 2. Global and local meshes for radially compressed laminated plate (deformed global mesh is shown)

|
|
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Debonds

\.

©)

Figure 3. Global and local meshes for butt strap tubular joint: (a) global mesh; (b) local mesh; (c) cross-sections of
local mesh

as those of the plate butt strap joint described above. The local mesh has two axisymmetric
debonds. The location and length of the debond are identical to those of the plate joint. The
debonds are not modelled in the global mesh. Twenty-node elements were used.

Table II gives the number of nodes, number of elements, and storage requirements for the
stiffness matrix for each of the models. The storage requirements are based on profile storage.

Table II
NN NE Profile
Plate butt strap model:
(2D)
Traditional 189 50 9795
Global 85 18 2355
Local 150 40 5610
Post-buckled laminate model:
(axisymmetric)
Traditional 749 220 83375
Global 389 108 28855
Local 429 128 34743
Tubular butt strap model:
(3D)
Traditional 2672 488 3831555
Global 1448 232 1290909

Local 1798 320 1276710
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The reduced storage requirements (relative to traditional finite-element analysis) are much
more significant for the three-dimensional model than for the much simpler two-dimensional
and axisymmetric models.

The material was assumed to be graphite/epoxy with the fibres arranged to give a quasi-
isotropic laminate. Lamina properties from Reference 3 were used. The properties for the
layers were averaged to give properties for a ‘homogeneous transversely isotropic’ laminate,
The procedure used to obtain the averaged properties is discusses in Reference 4. The resulting
material properties are:

E11 =52-6 GPa, E>; =52-6 GPa, E33=12-7 GPa
V12=0‘305, V23=O‘33, V13=0'33
Gi2=20-1GPa, Gy3=4-48 GPa, G13=4-48 GPa

RESULTS AND DISCUSSION

The behaviour of the iterative global/local method was evaluated in terms of stability and
accuracy, rate of convergence of force residuals to zero, convergence of strain energy release
rates, and computer resources.

Figures 4(a) and (b) show the results for the plate butt strap joint in Figure 1. Figure 4(a)
shows the error in calculated mode II strain energy release rate at the centre debond against
globalflocal iteration number for six variations of the non-linear globalflocal strategy. Note
that the traditional engineering solution (iteration O for strategies 2 and 3) is very poor. The
errors decrease rapidly to very close to zero for four of the six strategies. Strategies 4 and 7
performed poorly. This is due to the non-iterative local solution. Strategies 3 and 6 result in
very small errors, but the failure to iterate for the local model forces after the first globalflocal
iteration loop results in a ‘steady-state’ error of about 0-4 per cent after about four
globalflocal iterations.

Figure 4(b) shows the decrease in maximum residual forces Ymax against globalflocal
iteration number. Comparison of Figures 4(a) and (b) shows that yma, does not give a good
indication of the error in Gu. For example, after about four global/local iterations strategy
2 gives essentially zero error in Gy (Figure 4(a)). Figure 4(b) shows the yma, for strategy 2 at
four iterations is about 0-378 MPa. Strategy 7 has a smaller ymax of 0-234 MPa after six
iterations, but the error in Gy is about 15 per cent.

The next configuration studied was a relatively thick laminate with a post-buckled
delaminated region. Figure 5 shows the convergence history for the Mode I strain energy
release rate. Figure 5(a) shows definite convergence for strategies 2 and 3. For the other
strategies, which used limited iteration, convergence did not always occur. Figure 5(a) shows
that strategies 4 and 6 with one iteration did not converge. (These curves are labelled 4(1) etc.)
Strategy 5 with one iteration also did not converge. These results are not shown because they
fall outside the range of the graph. However, as the maximum iteration number increased to
five (indicated as 5(5) etc.), convergence was achieved. Figure 5(b) shows the normalized CPU
time against iteration number. The time for the initial global solution plus the global/local
iterations is divided by the time for a traditional global analysis with local refinement. The
larger CPU times per iteration for strategies 2 and 5 are due mainly to the full convergence
requirement in the local solution. Strategies 5 and 6 with carefully chosen tolerances or
maximum iteration limit resulted in convergence with less CPU time. Strategies 2 and 3 always
produced converged results, but took more CPU time than the other globalflocal strategies.
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If one considers the initial global solution a sunk cost for both globalflocal and traditional
analyses, all the strategies in Figure 5(b) are more efficient than traditional analysis.

The final configuration is a butt strap tubular joint subjected to flexure. Figure 6(a) shows
the error in maximum Gy and Gir against globalflocal iteration number. The solid line is for
strategy 3. The engineering solution has a very large error (iteration 0). The error decreases
rapidly, but appears to converge to a slightly incorrect answer. This error is believed to be a
result of not iterating to obtain a converged local solution after the initial globalflocal solution.
This hypothesis was tested by switching from strategy 3 to 2 for iteration 7 and then switching
back to strategy 3. The results are indicated by the broken lines. The error in Gy is now
reduced to essentially zero after a few additional iterations. The error in Gy is reduced, but
not to zero. These results suggest that, if a very tight tolerance is to be met, an adaptive
globalflocal strategy is needed. Development of an adaptive strategy was beyond the scope of
this initial study.

Figure 6(b) shows the normalized elapsed CPU time against globalflocal iteration number
for strategy 3. The time for the initial global solution plus the globalflocal iterations is divided
by the time for a traditional global analysis with local refinement. The efficiency of the
global{local procedure depends on the required accuracy. After 12 globalflocal iterations the
error is fairly small. The total CPU time is 25 per cent less than for a traditional analysis. If
one considers the cost for the initial global solution to be a start-up cost for both a globalflocal
or a traditional analysis, then the CPU for the global/local solution is more than 50 per cent
less for the globalflocal than for the traditional solution. Also, the memory requirements are
less for a global/local solution.

CONCLUSIONS

A globalflocal strategy was developed for analysis of geometrically non-linear structures.
Several variations of the basic globalflocal strategy were presented. As expected, some of the
variations were better than others in terms of both stability and efficiency. Results from this
initial study showed that the procedure can be very accurate and can result in significantly
reduced computer memory and CPU requirements. Further testing is needed to refine the
global/local strategy and to determine the class of problems (e.g. size of the model and severity
of the non-linearity) for which this algorithm is most suited.
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ABSTRACT : The analysis of textile composites is complicated by the complex micro-
structure. It is not practical to account for this microstructure directly using traditional
finite elements. A new type of finite element was developed to efficiently account for
microstructure within a single element. These new elements, which are referred to herein
as macro elements, performed well in initial tests.

INTRODUCTION

WO OF THE major obstacles to widespread use of laminated composites in
Thigh performance primary structures are the low strengths normal to the
lamina and the labor intensive fabrication processes currently used. There has
been considerable research aimed at developing tougher resin systems to enhance
the through the thickness strength. Also, robotics are being developed to reduce
the labor costs. Of course, there remains the question of whether laminated con-
struction is the optimal form.

Several alternatives which are receiving attention are weaving, braiding, stitch-
ing, knitting, and combinations of these. These various forms are referred to as
textile composites. Approximate analyses have been developed for predicting
moduli, but these analyses are far too crude to predict details of the local stress
field [1-3]. Very little detailed three-dimensional analysis has been performed.
These studies, which used 3-D finite elements [4-8], required tedious modeling,
many simplifying assumptions about the material microstructure, and only con-
sidered very simple loading. The computational challenge is obvious when one
examines the schematic of a simple plain weave in Figure 1. The resin pockets are
removed to show the fiber tow architecture. This tiny piece of material, which is
only about .28 mm thick and about 1.4 mm wide, is in fact, a fairly complicated
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Figure 1. Schematic of plain weave composite.

structure. If four mats are stacked to obtain a thicker composite (still only about
1.1 mm thick), it is obvious that the number of elements required becomes intol-
erable very quickly even for a coarse mesh (see Figure 2). A variationally consis-
tent and organizationally (and computationally) tolerable procedure is needed for
analyzing textile composites.

The objective of this paper is to describe a displacement based finite element
which accounts for the spatial variation of material properties within a single ele-
ment. This is in contrast to the usual choices of either adding more elements to
account for microstructure or using averaged material properties within each ele-
ment. The performance of this element is very similar to that in Reference [9],
but the formulation is totally different. The formulation of this new element will
be discussed first. Then several configurations will be analyzed to evaulate the
performance. For simplicity in the discussion, only two-dimensional configura-

tions will be considered. However, the approach is general and can be extended
easily to three dimensions.

Figure 2. Schematic of symmetrically stacked plain weave composite.
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Figure 3. Macro element with layered microstructure.

THEORY

To simplify the discussion, a rectangular element with multiple layers of
materials will be discussed first. Such an element might be used where the tows
are straight or for ordinary laminated composites when there are too many
lamina to model each individually. Then, microstructure of arbitrary shape will
be considered.

Consider the four node rectangular element in Figure 3 which contains three
lamina of composite material. To facilitate the following discussion, the element
will be referred to as a macro element and the subregions (lamina) will be refer-

red to as subelements. The displacement field within the macro element is
assumed to take the form

u(x,y) = N:(x,y)u;

(1)
v(x,y) = Ni(x,y)v:

where N (x, y) are interpolation functions and u; and v; are macro element nodal
displacements. In Equation (1) and subsequent equations Cartesian index notation
is used. In particular, a repeated subscript indicates summation. In Equation (1)
the summation is for the range i = 1 to 4 since there are four interpolation func-
tions for a four node element. The assumed displacement field is referred to
herein as single field because a single approximation is used through the entire
macro element. In contrast, a multi-field approximation would use approxima-

tions which are defined within a single subelement. The stiffness matrix can be
calculated using the familiar formula

K," = s SBmiDmanjdxdy (2)

where B,; and D... are the strain-displacement and constitutive matrices, respec-
tively. They are defined by the following equations

€. = B,q; 3
3)

0. = D,..c.
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Figure 4. Schematic of plain weave cross section.

where g; = list of the element nodal displacements.

The complication that we have is that the constitutive matrix D,., is now a dis-
continuous function of position. However, because of the simple geometry, one
can perform the required integrations in closed form for each subelement and add
the contributions. The details were described in Reference [7] for a four node ele-
ment. It was shown in Reference [10] that the closed form expressions for the K;
are quite simple for a four node element.

Rectangular macro elements with rectangular subelements cannot accurately
model wavy regions like that shown in Figure 4. For such microstructure one
needs to use distorted subelements. In the more general case, such as when the
interface between woven mats is not straight, the macro element will also be dis-
torted. Figure 5 shows a distorted quadrilateral macro element with distorted
subelements. The large numbers (1-4) are the macro element node numbers. The
smaller numbers are the subelement node and element numbers. For simplicity
the resin pockets are not modeled.

To obtain a single field approximation, the subelement degrees of freedom
(dof) must be expressed in terms of the macro element dof. There are several
ways in which we can proceed. Two procedures will be discussed herein. Before

Dangling node

Figure 5. Distorted quadrilateral macro element with distorted subelements.
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proceeding, it should be pointed out that in general the single ficld character 1s
only cxactly satisfied at the subelement nodes. The first procedure is to consider
the subelement mesh 1o be an ordinary finite clement mesh. The only difference
is that after the subelement stiffness matrix and equivalent nodal load vector are
determined, they are not immediately asscmbled, but are first transformed. This
transformation can be expressed in matrix notation as

K, =T.K..T,

i)

(4)
Fi - TmiF:.

where T, i1s defined by gi = T...q.. and

g: = nodal displacements for subelement
g.. = nodal displacements for macro element
K:.. = stiffness matrix for subelement
K., = subelement contribution to stiffness matrix for macro element

The transformation matrix T, is calculated using the macro element interpola-
tion functions (which are defined in terms of local coordinates ¢ and 7) evaluated
at the subelement nodes. For example, for a four-node macro element and a
three-node subelement the transformation is

o sﬂ ] .
t I t t
Vi 1 12 13 14 v,
= |t L Ly I 5)
U3 "
v; f3n b L v:
. d | ‘
where f,, = N;($i,n:) 0
’ 0 Nl(g‘l)nl)

Another possibility involves transforming the interpolation functions. This alter-
native is much more efficient unless there are a very large number of integration
points. This procedure will be illustrated by considering the interpolation for the

displacement in the x-direction, u. A few more definitions are required before
proceeding.

macro element displacement in x-direction

macro element nodal displacements in x-direction
subelement displacement in x-direction
subelement nodal displacements in x-direction

. = interpolation functions for macro element

N = interpolation functions for subelement

28R R g
I T

Il

Within a subelement the x-displacement is approximated as
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o g™
or. 7°* w = N (©6)
But the subclement nodal displacements are slaves to the macro element nodal
displacements, as described carlier. This can be expressed as

wi = N;({omi (7)
where {., n. = coordinates of subelement node i. Combining Equations (6) and
(7) gives

u' = NiN;($omou, (8)
or
u' = NiT,u; , )

where T;; = N;({:,n:). Note that this transformation matrix T; is similar to that

in Equation (4). The approximation for u can also be expressed in terms of
modified interpolation functions,

ut = 1\_/juj (10)

where N; = NiT},.

Since the range of i in Equation (10) is 1 — (number of nodes in the subele-
ment) and the range of j is 1 — (number of nodes in the macro element), the
“modified” interpolation functions can be different in number than the original
functions. These modified interpolation functions are used when calculating the
subelement stiffness matrices. Recall that the B matrix contains derivatives of the

interpolation functions N;. This presents no problem since the T,; contains only
constants. For example,

oN, aNfT .
ax ~ ox Y (1D

These modified interpolation functions are used in evaluating the terms related
to the displacement interpolation. The unmodified interpolation functions are
used to determine the determinant of the Jacobian for use in mapping the differ-
ential area d {dn from the subelement local coordinate system to a global coor-
dinate system. Since the subelement displacements are slaved to the macro ele-
ment displacements, there is considerable freedom in defining the subelements.
For example, there 1s no need to prevent “dangling” nodes like that shown in
Figure 5. In fact, one can even define the stiffness matrix for a macro element to
be a summation of some very unlikely looking subelements. This is shown sche-
matically in Figure 6. This is probably of little practical utility for two-
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Figure 6. Alternate calculation of macro element stiffness matrix for two-dimensional con-
figuration (Dma = constitutive coefficients).

dimensional models, but for three-dimensional models this represents a major
simplification.

The single ficld approximation gives very poor results for some configurations.
For example, if the lamina in Figure 3 have large differences in Ey, it is very
difficult to approximate the stiffness in the y-direction using a single field approx-
imation. This is because the single field assumption results in continuity of
strains, which causes a discontinuity of stresses which should be continuous at
the lamina interfaces. A numerical example of this poor performance will be
given in the “Results and Discussion” section. However, as will be illustrated
later, there are realistic configurations with significant inhomogeneity for which
a single field approximation performs well. Also, the macro elements described
herein cannot be evaluated using the usual mesh refinement convergence meth-
ods. As the mesh becomes more refined, the inhomogeneity within an element
disappears and the macro element becomes an ordinary element.

RESULTS AND DISCUSSION

Results for two basic configurations will be presented. The first is a one-
dimensional bimaterial rod and the second is a 2D idealization of a woven textile.
The material properties for the woven textile were assumed to be

E,, = 100 GPa £, = 10 GPa Es; = 10 GPa
v, = 035 v = 0.35 vas = 0.3
G, = 5GPa G =5GPa G, = 3.845 GPa
These material properties are meant to represent those for a transversely iso-
tropic tow. They do not correspond to any particular material system. Two-

dimensional material propertics were obtained by imposing plane strain condi-

tions. The material properties were transformed to account for the inclination of
the fiber bundle.
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Figure 7. Error in calculated stiffness using single field approximation.

The bimaterial rod (shown schematically in Figure 7) was used to evaluate the
accuracy of a single field approximation when two materials are loaded in series.
The axial displacement was assumed to vary as L7,a,x‘, where n equals the
order of the polynomial. Figure 7 shows the error in predicted stiffness verus the
ratio E,/E,. As expected, the error increases with the ratio E, /E, . Perhaps sur-
prising is the inability of an eighth order polynomial to adequately predict the re-
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Effective 4017 60 eight-node traditional ——
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T T

0.05 0.1 0.15 0.2 0.25 0.3 0.35
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Figure 8. Extensional modulus versus waviness.
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sponse when £, /E, 1s larger than about 2. Obviously, the single field approxima-
tion is not very uscful when two very different materials are loaded in serices.
However, most realistic configurations involving dissimilar materials have load
paths which are a combination of scrics and parallel. The example of primary
concern in this paper s a textile composite, which will be discussed next.

Two-dimensional idcalizations of textile composites were analyzed using single
fiecld macro clements. The tow path was assumed to be sinusoidal. The thickness
of the tow, b/2, was kept constant along the path. Waviness ratios b/a (see sketch
in Figure 8) were varied from 083 to .333. It should be noted that a woven com-
posite is inherently three-dimensional. There s no typical cross section. Con-
comitantly, results from any two-dimensional textile model must be used with
caution. Conscquently, the results presented should only be interpreted as an
evaluation of the effectiveness of the macro elements for handling microstructure.
Figure 8 shows the variation of extensional stiffness with waviness. Two symmet-
rically stacked mats were considered. Only one mat was modeled. Symmetry
conditions were imposed on the lower surface of the mat. Results were obtained
using 60 eight-node traditional finite elements (reference solution) and 2 cight-
node macro elements. The macro elements predict the stiffness variation quite
well, except for very large waviness ratios.

Figure 9 shows undeformed and deformed finite element meshes for a single
textile mat using 8-node traditional and 12-node macro elements. This configura-
tion is different from that in Figure 8, which had symmetry on the lower surface
of the mat. The absence of symmetry constraints results in large bending defor-
mation. The deformed meshes are also shown overlaid to compare the predicted
shapes. The macro elements predict the deformed shape very well.

Figures 8 and 9 showed the good performance of the macro element for pre-
dicting global response. This does not imply that stresses or strains within the el-
ement can be calculated accurately. In fact, the errors can be quite large. Figures
10 and 11 show the variations of o, along the lower boundary of the axial tow for
two symmetrically stacked mats. Results are included for both traditional and
macroelement analyses. The sample points are labeled in the figures as points
1-6. Figure 10 shows o, for a waviness ratio of .333. The actual o, variations, i.e.,
that calculated using conventional finite elements) is not complicated, but the
single-field approximation is quite inaccurate. A waviness ratio of .333 is fairly
large. For a smaller waviness ratio of .166 (Figure 11) the accuracy of the single-

Eight node traditional elements Twelve node macro elements

Overiaid Meshes ’%R

Figure 9. Comparison of deformed traditional and macro element meshes.
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ticld approximation is much better. However, the use of single-field finite cle-
ments to calculate local stresses and strains is not rccommended. Much better es-
timates for local stresses and strains can be obtained using a global/local strategy.
Single-ficld macro clements can be very useful for the global analysis. A refined
traditional finite element analysis can then be used for the local analysis.

CONCLUSIONS

A new type of finite clement was developed for analysis of textile compositcs.
This new clement (referred 1o herein as a macro clement) accounts for the spatial
variation of material properties within a single clement. Tests of the macro cle-
ments showed good performance for modeling the global deformation behavior
of textile composites. Because of the single field assumption, the stresses
caleulated inside the macro element are not accurate. To obtain these stresses a
global/local strategy should be used in which macro elements are used for the
global analysis and conventional finite clements are used for the local analysis.

Although only two-dimensional elements were evaluated, the formulation is
valid for three dimensions. However, there are challenges in 3D modeling, which
are not so apparent or do not exist for 2D models. For example, in 3D one could
imagine mats which are oriented at other than 0° or 90° relative to the macro ele-
ment axes. Such an off-axis mat is much more difficult to model, particularly if
it is combined with mats with other orientations. There is obviously still much
work required to develop a general textile composite analysis.
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Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, U.S.A.

SUMMARY

For some heterogeneous materials, it is not practical to model the microstructure directly using traditional
finite elements. Furthermore, it is not always accurate to use homogenized properties. Macro elements
have been developed which permit microstructure within a single element. These macro elements
performed well in initial tests.

INTRODUCTION

In traditional 2D and 3D finite-element analysis, the material properties are assumed to be
constant or at least to vary smoothly within a single element. This is valid for most engineering
applications because the microstructural scale (e.g. grain size in a metal) is very small
compared with the element size. However, some materials exhibit a very coarse
‘microstructure’, such as laminated or textile composites. Figure 1 shows a schematic diagram
of a cross-section of a textile composite. Owing to the complicated geometry, textile composite
structures are very difficult to analyse. To use the traditional finite-element method to solve
this kind of problem, finite elements have to be defined such that the material properties vary
smoothly in each finite element. This results in a very large number of elements. For Iaminated
composites, the geometry is simpler, but if there are many laminae (for example, 50 laminae
for a 6-25 mm laminate), modelling of individual layers becomes impractical because of the
large number of elements.

Material homogenization is one way of treating inhomogeneous materials. In this procedure,
the spatially variable material properties are replaced by some ‘effective’ homogeneous
properties. The effectiveness of material homogenization, however, depends on the problem
to be analysed. Material homogenization theories! ~3 assume that the applied loading on the
boundary of the representative volume element (RVE) is spatially homogeneous. This
assumption is good as long as the characteristic scale of the microstructure is much smaller
than that of the macrostructure. For example, volume averaging in laminated composites
‘works well for in-plane loads. However, it gives large errors for bending loads unless there are
many plies and the different plies are highly dispersed through the thickness. Higher-order
theories such as classical laminate theory (CLT)* account for the geometric details of the
microstructure for the laminated composite plates in terms of Ist and 2nd area moments of
inertia. CLT works well for in-plane and bending problems in thin laminated plates. But CLT
ignores out-of-plane strains, which is unacceptable for relatively thick plates. There are many
other ways of homogenization, but none of them are problem-independent. When there are

0748-8025/93/120937-135$11.50 : Received March 1992
© 1993 by John Wiley & Sons, Ltd. Revised February 1993

PANEEIG PAGE WLANK NOT FRMEP
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material property discontinuities, it is most accurate to model each material group discretely.
However, this approach requires large computer memory and CPU resources.

Some work has been done in dealing with specific problems to overcome this difficulty.
Steven® developed a quadratic triangular and a quadratic isoparametric element with an
internal interface modelied by a straight line. In his work, triangular subregions were used to
perform numerical integration. He also suggested the possibility of using a second
isoparametric mapping to simplify the integration, but he neither described any details nor
implemented the method. The concept of splitting the integration limit was also discussed by
Panda et a/.® In his finite-element formulation for laminated plates, the integration limit
through the thickness was divided to define material properties of each individual layer. Foye’
studied material properties of fabric-reinforced composites using subcell analysis. The unit cell
was divided into rectangular paralellepiped subcells. Since the subcell boundaries do not match
the material interfaces, averaged material properties were used in each subcell.

The present paper describes a ‘macro’ finite element which can account for the details of
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Figure 1. Schematic diagram of woven composite
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Figure 2. Typical 4-node macro element

microstructure within an element. A macroelement is defined to be an element consisting of
several subdomains. Figure2 shows a macro element that has four subdomains. Macro
elements can have material discontinuities inside the element, but in each subdomain the
material properties are smooth functions of the spatial co-ordinates. The macro element is
identical to a traditional finite element when it has only one subdomain. When there are
material discontinuities, the subdomainss are used to define the material boundaries and to
facilitate the numerical integrations.

It should be noted that since the present study was based on a displacement formulation,
even with very high-order interpolation, significant stress errors are expected near the region
where geometric or material discontinuities occur. Local stress distributions for regions of
special interest can be achieved by globalflocal analysis. 8-10 The proposed macro elements are
best suited for use in the global analysis.

In the following Sections, the finite-element stiffness matrix formulation is explained in
detail. Then examples for several configurations are discussed to illustrate the performance of
the macro elements.

CALCULATION OF MACRO ELEMENT STIFFNESS MATRIX

This section describes the finite-element stiffness matrix formulation for a macro element for
two-dimensional elasticity analysis. The extension to three dimensions is trivial and will be
discussed briefly at the end of this Section.

In a traditional displacement-based finite-element method, the element stiffness matrix has
the form

(K] = L (B]T[D] [B] dxdy )
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where [D] and [B] are defined by
{o} = [D]{e}
{e} = [Bl(q)

and {q} is the nodal displacement vector. Supposing that there are material property

inhomogeneities within the integration domain 0 (i.e. the [D] matrix is a piece-wise-continuous

function of spatial co-ordinates within a macro element), the macro element is divided into

subdomains. Within each subdomain, the material properties vary smoothly (see Figure 2).
Consider an element that has 7 subdomains Qi where

n

2 %i=0 @)

i=1

The element stiffness matrix becomes

i=1

n
(K1= 3 | B1"(D):[B] dxay )

A robust procedure is needed to evaluate the contribution of the ith subdomain
K1i= | BIT(DL:(B] dxdy @)

The procedure developed herein involves the use of three co-ordinate systems. Figure 3 shows
the three co-ordinate systems. The use of three co-ordinate systems differs from conventional
finite elements, which use a global and a local co-ordinate system. (In Figure 3, these are the
(x,y) and (&, ) systems.) The mapping of co-ordinate systems in conventional finite elements
permits integration over a simple square region even when the actual finite element is quite
distorted. If the material properties vary discontinuously within an element, subdomains must
be defined in which the materijal properties vary continuously. In general, these subdomains
are distorted such as the one indicated by the shaded region (j ikl) in Figure 3(a). When this
distorted subdomain is mapped into the (£, 7) co-ordinate system, it is still distorted (shaded
region in Figure 3(b)) and concomitantly the integrations would not be simple. If this
subdomain is mapped again into a third co-ordinate system (r, s), the integrations are again
quite simple. The remaining task is to describe how to perform the integrations in the (r, 5)
co-ordinate system.

There are two primary concerns. The first is defining the differential element dx d yin terms
of dr ds. Figure 3 shows that

dxdy=|J|dtdy (5)
where J is the Jacobian matrix defined by
yj=9(xy)
a(,n)
However,
dtdy=|J|drds (6)
where
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Figure 3. Mapping between three co-ordinate systems

Therefore, the net result is
dxdy=|J3||J|drds (7

The second concern is defining the integrand in terms of the (r,s) co-ordinates. That is,
[B1T[D]; [B] involves derivatives of the interpolation functions. These interpolation functions
are defined in terms of £ and 5, not r and s. For example,

dx da¢
=3 ®)
dx dn

Note that the calculation of the derivatives involves J but not J. This is because the Ni’s are
defined in terms of £ and 7 alone. It is necessary to evaluate the integrand [B]T[D]:[B] at
particular values of r and s. As part of the mapping between the (£, ) and (r, s) co-ordinate
systems, ¢ and 5 are approximated as

E:}V,-(r,s)éi

_ 9
7 =Ni(r,s)n: ®
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When performing numerical integration in the (r,s) co-ordinate systems, £ and 7 are
determined using equation (9). These values are then used to evaluate the integrand.
With equations (4) and (7), the contribution of the ith subdomain stiffness matrix becomes

1 1 _
[K]; = S_l S_, (B]T[DJ:(B]|J||¥ | drds (10)

In Figure 2, both the macro element and the subdomains are quadrilaterals. This is not
necessary. The interpolation for the solution is defined in the (£, ) co-ordinate system. The
subdomain, which is mapped into the (r, s) system, is needed only to simplify the numerical
integrations. The type of subdomain does not affect the solution except that it should
adequately describe the geometry of the microstructure.

The extension to three dimensions is simple. The three co-ordinate systems would be
(x,5,2), (§,1, %) and (r, s, t). The form of equations (1)—(10) is unchanged except to account
for an additional co-ordinate direction. The contribution of the ith subdomain to the macro
element stiffness matrix would be

1 1 1 _
[K];:S S S [B]T(D);(B] [3]|J| drdsde an
-1 J-1 J-1

RESULTS AND DISCUSSIONS

This section discusses the use and performance of the macro elements for two-dimensional
elasticity. Three basic configurations were studied: (1) square and distorted 4-node elements,
(2) (0/902/0) and (90/0,/90) laminated beams with end moment and shear force loadings, and
(3) a single and double plain weave textile composite under tension. Four-, 8- and 12-node
macro elements were evaluated. The following material properties were used:

Eu = 100 GPa E22 = 10 GPa E33 =10 GPa

V12=O'35 Vx3=0‘35 Vz3=0‘3
G2 =5 GPa Gi13 =5 GPa G23=3-845 GPa
X
’r ]3 (1,1.5)
©,1) 1) ©.1
@ ©
& ) X, o J X3
0,0 (1,0) (0,0) 2,0)
(a) Square macro element (b) Distorted macro element

Figure 4. Macro elements for test of mapping



MACRO FINITE ELEMENT USING SUBDOMAIN INTEGRATION 943

Two-dimensional material properties were obtained by imposing plane strain conditions. For
textile composites, the material properties were transformed to account for the inclination of
the fibre bundle.

The first use of the macro element was to demonstrate that the mapping is correct. Square
and distorted 4-node macro elements were subdivided into four subdomains (Figure 4). All

Table I. Eigenvalues against Gauss integration
points for square elements (Figure 4(a))

Eigenvalues (x 10°)

Integration 1x1 2x2

4-node traditional: 0-00000 0-00000
0-00000 0-00000
0-00000 0-00000
0-00000 -76923
0-00000 -76923

69230
69230
23076

—
[
[
(=
~1
=)}
—

4-node macro:

+76923
+76923
69230
+69230
-23076

O HhDOOO VI
OO VN

—
N
W
(o]
-~
[=,%
—

Table I1. Eigenvalues against Gauss integration points for distorted elements (Figure 4(b))

Eigenvalues (X 10%)

Integration 1x1 2x2 3Ix3 4x4 55
4-node traditional: 0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 4-55397 4-61494 4-61621 4-61624
0-00000 6-19357 6-25265 6-25377 625379
7-18992 8-56256 8-62312 8-62441 8-62444
7-93269 9-38271 9-46246 9-46405 9-46409
20-57450 20-87012 20-87916 20-87935 20-87935
4-node macro: 0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 0-00000 0-00000 0-00000
7-93509 4-61146 4-61621 4-61624 4-61624
8-59403 6-24930 6-25377 6-25379 6-25379
3-63243 8:61957 8-62441 8-62444 8-62444
5-06974 9-45776 9-46405 9-46409 9-46409

20-76932 20-87863 20-87935 20-87935 20-87935




944 K. WOO AND J. D. WHITCOMB

four subdomains were assigned the same material properties. The macro element stiffness
matrices should be the same as that for 4-node traditional elements. Tables I and II list the
eigenvalues of the traditional and macro element stiffness matrices for different orders of
integration. For the square element shown in Figure 4(a), both traditional and macro elements
produce exactly the same results when (2 x 2) Gaussian integration is used. Note that since
there are four subdomains, the actual number of integration points for a macro element is four
times the number of subdomain integration points. For the distorted element shown in
Figure 4(b), results for the traditional finite element using (2 x 2) integration differ from the
exact solutions. Table II shows that (3 x 3) integration for the traditional element and (2 X 2)
integration for the macro element are nearly exact. As the integration points increase, both
elements converge to the same results.

Figure 5 shows the moment resultants for two laminated beams. Tip displacements were
applied to produce a maximum strain of 0-1%. Homogenized material properties were
obtained by the rule of mixtures.* The reference solutions are from traditional finite-element

e T 4
3] homogenized J&i] 7 homogenized |

el

SRR

*3%|  reference

vv;'-l

8-node macro

8-node macro

4-node macro 4-node macro

0 4 8 12 16 8 12 16
Moment, N-m Moment, N-m
(a) (0/90/90/0) (b) (50/0/0/90)

Figure 5. Moment resultants for two stacking sequences

Table III. Percentage error for moment
resultants

(0/90,/0)  (90/0,/90)

4-node macro 2-451 5-832
8-node macro 0-001 0-000
12-node macro - -
Homogenized 37-61 160-3
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analysis with four 8-node traditional elements. Four-node and 8-node macro elements were
evaluated. A single macro element with four subdomains (one subdomain per lamina) was
used. For the 4-node macro element, selective ‘reduced’ integrations'' with 17 integration
points were performed. Results show that for both (0f 90,/0) and (90/02/90) stacking sequences,
one 4-node or 8-node macro element predicts the bending stiffness very well. Of course, an
8-node traditional element with the volume-averaged homogenized material properties cannot
distinguish differences in the stacking sequence. Hence, the errors are large for the volume-
averaged homogenized material model, as expected. The percentage errors are shown in
Table I1I. Note that accuracy depends on stacking sequence.

Figure 6 shows the tip displacement comparisons for a short (3 X 1) cantilever beam for two
stacking sequences. A unit shear force was applied at the right end of the beam. Four
subdomains were used to account for the inhomogeneous material properties. Single 4-node,
8-node and 12-node macro elements were used. The reference solutions were obtained with a
refined mesh (64 eight-node elements). As expected, the traditional finite-element analysis using
the refined mesh with volume-averaged homogenized material properties does not predict the
deformation behaviour. The 8-node macro element predicted the displacements fairly well. The
12-node macro element showed excellent performance. The 4-node macro element did not
perform well. This was expected since the assumed displacement fields for the 4-node element
are too simple for this problem. Table IV shows the percent errors for each case. For all three
macro elements, the error was larger for the (90/02/90) laminates.

The ‘effective’ extensional modulus E, against waviness of plain weave textile composites
was calculated using traditional and macro elements. Figure 7 shows the configuration studied:
two symmetrically stacked layers. Thick and thin lines in the upper mat indicate the macro
elements and subdomains, respectively. Only the upper mat was modelled because of
symmetry. The models have a length which is the same as the fibre bundle wavelength. For

e

8-node macro

4-node macro

t T Y 1 - d T T -8
0.0 02 04 06 x100 00 02 04 0.6 x10
Displacement, m Displacement, m
(a) (0/90/90/0) : ®) (90/0/0/90)

Figure 6. Tip displacements of (3 x 1) cantilever beams of two stacking sequences
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simplicity, the textile composites were assumed not to have any pure matrix regions.
Displacements were applied to produce a 0-1 per cent nominal strain {¢) in the x-direction.
The effective E; was defined to be

{o)
Ex =
&
where
(o) = Axial force ’ (ey = Au
Area a

The waviness was defined to be w=b/a, where the centreline of the wavy fibre bundle is
assumed to have a sinusoidal shape given by

=Qsin 27X
Y 4 a

Two 4-, 8- and 12-node macro elements were used. Each macro element consisted of 15
subdomains and models a half-wavelength. For the reference solution, a mesh with 60
traditional eight-node elements was used. Figure 8 shows several of the traditional finite-
element models. (The wavy fibre bundles are indicated by the shaded region.) Figure 9 shows
the effective E; against waviness. The error increased with increased waviness. Both 8-node
and 12-node elements performed fairly well. The 4-node element was not very accurate except
for small waviness.

Table IV. Percentage error
for tip displacements

(0/90,/0) (90/02/90)
23-78 29-45
9-873 12-87
2-857 4-777
33-11 54-64
subdomain macro elements

Figure 7. Two symmetrically stacked plain weave mats
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Figure 8. Several traditional meshes: (a) bfa=0-333, (b) b/a=0-167, () bja=0-111, (d) bla=0-083
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Figure 9. Extensional modulus against waviness
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(a) Traditional mesh (b) Macro element mesh

EESSEESSSSEEeeEssSSE
e T T

1.

(¢) Overlaid deformed meshes

Figure 10. Deformed meshes for a single plain weave mat (120 eight-node traditional elements and 4 twelve-node
macro elements are used; waviness bfa = 0-167; nominal strain = 0-05)

Deformed meshes for macro element and traditional models are shown in Figure 10. These
models are for a single plain weave mat (i.e. no symmetry). The Figure shows quite graphically
the effect of the microstructure on the predicted deformation of a single mat. The Figure also
shows that the macro element predicts the deformed shape very well. It should be noted that
only linear analysis was performed in the present study. The deformation shown in Figure 10
is larger than would be expected from a non-linear analysis.

CONCLUSION

A displacement-based macro element was developed to expedite elasticity analysis of
heterogeneous materials. Two-dimensional macro elements with four, eight and 12 nodes were
implemented and evaluated for several realistic configurations. Since the macro elements used
a continuous strain field approximation, it is obvious that there is violation of equilibrium at
the material interfaces and the stress distributions near the interfaces would not be very
accurate. However, the macro elements performed well in terms of global response for the
configurations considered. To obtain detailed local stress distributions, a global/local strategy
is needed. The proposed macro elements should be very useful for expediting the global
analysis.
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ENHANCED DIRECT STIFFNESS METHOD FOR
FINITE ELEMENT ANALYSIS OF TEXTILE COMPOSITES
by
John Whitcomb
Kyeongsik Woo
Department of Aerospace Engineering
Texas A&M University, College Station, Texas 77843-3141

ABSTRACT

Traditional homogenization techniques are not useful when the microstructural scale of
d material is of the same order of magnitude as the structural scale of a component. Such is the
case for many textile composites. Since discrete modeling of the microstructure throughout a
component is prohibitively expensive, continuum finite elements are needed which account for

microstructure within a single element. This paper describes a simple substructuring technique
for formulating these special elements.

INTRODUCTION

By changing stacking sequence, fiber orientation, and materials, traditional composite
laminates can be tailored for specific applications. With the introduction of advanced textile
composites, there are even greater opportunities to tailor composite properties. Not only are

there many textile forms (eg. weaves, braids, knits, etc.), but there are many unique varieties
of each form.

Accurate predictive analyses are essential for designing high performance composites.
In contrast to traditional tape laminates, verified analyses are not in place for textiles. Figure 1
illustrates the complexity of the task of developing an accurate textile analysis. The figure shows
schematics of a traditional laminate and a woven material. For the traditional laminate one can
define a unit cell of dimensions approximately .007 mm. This unit cell can be analyzed to
determine effective engineering properties for the much larger individual lamina. Then each
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lamina can be treated as a homogeneous orthotropic layer. For a woven composite the unit cell
can be larger than lmm. For the woven composite one can use homogenized engineering moduli

to describe the tow properties (a tow contains on the order of 6000 filaments), but there is a
much larger microstructural scale related to the interlocking of the tows.

Description of the material properties for a weave requires different strategies at different
microstructural scales. Figure 2 illustrates different microstructural scales. Actually all of the
schematics were generated from the same basic unit cell labeled “coarse microstructure." The
term “coarse" refers to the very distinct phases at this level of observation. In contrast, if a very
large number of unit cells are considered, the material appears almost homogeneous (schematic
labeled fine microstructure). At the extremes of microstructural scale the choices for material
modeling are obvious. For coarse microstructure the individual tows and matrix pockets are
modeled discretely both in terms of geometry and the abrupt changes in properties at the
interfaces. For fine microstructure effective homogenized engineering properties can be used. -
Traditional finite element methods are appropriate at these two scales. Between these two
extremes (labeled “transitional microstructure") traditional finite elements are not appropriate.
In this range there are too many microstructural features to model them all discretely, but there
are too few to use homogenized material properties. In the transitional range of microstructure,
special finite elements are needed which permit material variation within an element. Of course,
this is routine for layered plate and shell elements.

Recently, continuum elements have been developed for accounting for textile type
microstructure within a single element [1,2]. The elements described in these references are
based on a single assumed displacement field throughout the entire element. A more general
element formulation is presented herein that includes the single field approximation as a
degenerate case. This more general formulation is an example of reduced substructuring {3]. In
brief, the implementation begins with the development of an ordinary finite mesh for the basic
textile unit cell. Then interior degrees of freedom are statically condensed out. Next the number
and location of desired boundary degrees of freedom are selected. Finally, the original boundary
degrees of freedom are expressed in terms of the desired boundary degrees of freedom. One
objective of this paper is to describe a very simple technique for calculating the stiffness matrix
for a reduced substructure. The other objective is to show a few results which illustrate the
effectiveness of this type of element.

In the discussion that follows, the term “macro element" will be used to indicate an
element which allows for internal microstructure. Accordingly, the elements described in [1,2]
are single-field macro elements. Similarly, the reduced substructure elements will be referred

to as multi-field macro elements, since the displacement field inside the macro element is defined
piecewise.

THEORY FOR REDUCED SUBSTRUCTURING

In multi-field elements the internal dof are eliminated using the equivalent of static
condensation. Also, boundary degrees of freedom (dof) which are not to be part of the macro
element dof are expressed in terms of the substructure dof using multipoint constraints.



Theoretically, this is all very simple. Consider the 4-node macro element in Figure 3.

Assume the governing equations are partitioned as follows

K, K

AB| Iq, _ FA %))
Kis Ky s F

and q, is the list of unknowns to be condensed out (see Figure 3).

Before imposing the multipoint constraints on the excess boundary dof, the reduced
stiffness matrix and load vector can be expressed as

o T -1
Kpg = Kpp — Kip Kyu Ky 2)

Fy

T -1
Fp - K,p K 4 Fy

This procedure often is not practical as stated because of the matrix inversion which
eliminates sparsity in K, 4 and the large matrix multiplications. The elimination of internal dof
can also be accomplished using Gaussian elimination if the dof to be eliminated are grouped
together at either the beginning or the end of the list of unknowns. This procedure is well
known, so it will not be discussed herein. See [4] for details. After eliminating the interior dof,
multipoint constraints can be applied to the remaining dof to eliminate unwanted boundary dof.
This can be expressed in matrix form (assuming the four node macro element in Figure 3) as

Uy
Vi

qB = Tqmacro where qmacto = : (3)
Uiy

Y14

The transformation matrix T expresses how the excess boundary dof are slaved to the
macro element dof. It should be noted that if the internal dof are also slaved to the macro
element dof (rather than statically condensed), a single-field approximation is obtained. Of
course, a formulation like that in [1] is much more efficient for single-field elements. However,
the current formulation permits great flexibility for evaluating various approximations.

It is not always efficient to order the dof such that Gaussian elimination can be used to
obtain the reduced stiffness matrix and load vector, since such ordering might result in large

bandwidths. An alternative is to use the formal definition of the stiffness coefficient Kij-

Kij = force at dof i due to unit displacement at dof j



Using this definition we would simply solve a series of problems in which one dof is set equal
to 1 and the rest of the boundary dof would be constrained to zero. The restraint forces at all
the boundary dof constitute one column of the reduced stiffness matrix.

This process is repeated for each boundary dof to obtain the entire reduced stiffness
matrix. The reduced load vector is obtained by solving one additional problem in which all
boundary dof are constrained to be zero and the internal loads are applied. The negative of the
boundary restraint forces constitute the reduced load vector contribution for the internal loads.
Once the reduced set of equation is obtained, the multipoint constraints can be imposed to
eliminate unwanted boundary dof. This alternative is not new. It can be considered a numerical
application of the direct stiffness method for calculating stiffness matrices. It also may not be
very efficient when there are a large number of boundary dof to be eliminated. Consider a case
in which there are 32 boundary dof, but only 8 are to be retained in the macro element. The
procedure described above requires the solution of 32 unit displacement cases. A new procedure
is discussed next which would only require 8 unit displacement solutions.

ENHANCED DIRECT STIFFNESS METHOD

The enhanced direct stiffness method is derived starting with a consideration of the work
performed by the boundary nodal forces during deformation. To simplify the discussion only
linear configurations will be considered herein. Figure 3 show a schematic of a typical mesh for
a macro element. There are four interior nodes (nodes 1, 2, 3, 4), four boundary nodes to be
retained (nodes 11, 12, 13, 14; dof = g;), and six boundary nodes (nodes 5, 6, 7, 8, 9, 10;
dof = ) Wthh are slaved to the g; through multi-point constraints. The nodal forces
correspondmo to g; and q are defined to be F; and F 4, respectively. For the particular mesh

in Figure 3, the range of 1 and 8 are 1-8 and 1- 12 respectwely. Assuming linear elasticity, the
work performed by the boundary nodal forces 1s

1 g
W= J(Fa, + Fegy)
. i =1, number of retained dof @

B = 1, number of slaved dof

The EB are slaved to the q;, which can be expressed as

as = Ty q; ' (5

where TBl N;(&g, ng) is calculated using interpolation functions for the boundary. Combining
equations 4 and 5 yields

W= _(Fq; + FyTy.q,) (6)

It is well known that the stiffness matrix can be expressed as [5]



2
Kk =-2Y 9
9q,9q,

But U = W for linear configurations so that

2
K,, = 27 ®
99,99,
Combining eqns. 6 and 8 yields
_1|OF, OF, OF,_  OF ©)
nm 2

. . . doF oF .
From the Maxwell-Betti reciprocity theorem we know that 3 t o= p ~ . The third and fourth
9 q,

terms in equation 9 are also equal for the same reason, but it is not obvious in the present form.
To make the equivalence more obvious, first, equate the work of the forces F g with that of the
equivalent forces f in terms of the retained dof

ﬁpap = ";'f,-q,- (10

(SRR

Combine equations 5 and 10 to obtain

Fﬁ Ty, q; -fi q; an

Equation 11 shows that the equivalent nodal forces -f-- are

1? Ty, (12)

"sl

Hence, the third and fourth terms in equation 9 become

o, . n

(13)
dq aq

mn



Again, using the Maxwell-Betti theorem, these two terms are equal. Therefore, equation 9 can
be expressed as

(19)

The implementation of equation 14 using the direct stiffness method is as follows:

1. Impose a unit displacement q;.

Also impose displacements ?l_ﬁ, since EB = Tg19;-
Analyze model.

Calculate restraint forces F, and ?5.

Calculate f,, = FgTg,

The sum of F, and Tn = column 1 of the reduced stiffness matrix.

N oL oA W

Repeat steps 1-6 for each ;.

CONFIGURATIONS

Plain weave composites with different waviness were analyzed. Figure 4 shows a
conventional 3D finite element model of a plain weave. It has 381 nodes and 64 quadratic
elements. The tow path was assumed to the sinusoidal. The waviness ratio is defined to be b/a,
where b = the mat thickness and a = the wavelength for the tows. The waviness ratio was
varied from .033 to .33.

This mesh was used to obtain reference solutions. It was also used to generate 20-node
single-field and multi-field macro elements. Hence, there were three models: the conventional
model shown in Figure 4, a one element mesh using a 20-node single field element, and a one

element mesh using a 20-node multi-field element. The single-field results were obtained using
the formulation in {1].

Two sets of boundary conditions were used: one for a narrow two mat composite and the
other for an infinitely repeating unit cell. The boundary conditions for the narrow two mat case
correspond to a specimen which is infinitely long in the x-direction, width "a" in the y-direction,
and thickness 2b in the z-direction. The boundary conditions were as follows.



Narrow two mat composite:

u(,y,2) =0 u(g R ,z) = specified constant value
y 2 Yy P 1s)
v(x,0,2) =0

w(x,y,0) =0

Infinitely repeating unit cell:
Constraints listed in equation (15) and

Vx, a ,Z| =constant
2
w(x,y,b) = constant

The material properties for the tows and resin pockets were assumed to be

Tows:
E,, = 206.9GPa E,, = 5.171GPa E,; = 5.171GPa
V12 = .25 I/13 = .25 V23 = .25
Resin:

E = 3.45GPa v =.35

RESULTS AND DISCUSSION

There are two aspects to the evaluation of the procedures outlined in this paper. First,
the methodology for calculating the multi-field stiffness matrix was checked. This was
accomplished by comparing the stiffness matrix with that obtained using standard Gaussian
elimination followed by application of multipoint constraints. As expected, the results agreed.
The second task is to evaluate the performance of the multifield elements for analysis of textile
composites. This second task is only partially complete. A few results are discussed in this
section which suggest that this type of element can be very useful.

Axial loading along the x-direction of a narrow strip of plain weave composite was
modeled, as described in the Configuration section. Because of the complex spatial variation of
materials properties, there is significant distortion, even under simple extension. Figure 5 shows
the distortion of the macro element mesh and the conventional mesh. The macro element predicts
the distortion quite well. ( It should be noted that the elements in Figure 5 are drawn with

straight lines joining the nodes. This is a limitation of the plotting software, not a characteristic
of the solution.)



Figures 6 and 7 show the variation of several effective engineering properties with
waviness ratio for infinitely repeating unit cells. Results are shown for conventional, single-field,
and multi-field elements. Both types of macro elements predict the trends quite well. As
expected, the performance of the multi-field elements is considerably better than that for the
single-field elements. The accuracy of the multi-field elements is quite good except for very
large waviness ratios. At small waviness ratios the single-field macro elements predict the in-
plane behavior very well, but not the out-of-plane (ie, E,, v,,). The single-field approximation
imposes strain continuity throughout the element, which is not correct for heterogeneous regions.

The error associated this approximation is more significant for out-of-plane properties than for
in-plane properties.

CONCLUSIONS

A simple formulation for multi-field continuum finite elements with microstructure was
developed. Initial tests showed very good performance in modeling the global response of a plain
weave composite subjected to axial extension. Much more work is needed to fully evaluate the
performance of these elements. Future work is needed ( and is planned) to evaluate the accuracy
of these elements for much more complex loadings. Also, planned is an evaluation of the
accuracy of the calculated stress fields within the elements.
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Figure 4 Original finite element mesh for textile composites.
(381 nodes, 64 elements)
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Boundary Effects in Woven Composites
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Abstract

Two dimensional finite elements were used to study boundary effects in plain weave
composite specimens subjected to extension, shear, and flexure loads. Effective extension, shear,
and flexural moduli were found to be quite sensitive to specimen size. For extension and flexure
loads stress distributions were affected by a free surface, but the free surface boundary effect

did not appear to propagate very far into the interior. For shear load the boundary effect
appeared to propagate much further into the interior.

Key Words: textiles
woven composites
finite elements
stress analysis
boundary effects

Introduction

Fiber tows, each consisting of thousands of individual filaments, can be woven, braided,
knitted, etc. to create complex fiber preforms. These preforms are then impregnated with a resin
and cured to make textile composites. The interlacing of the fiber bundles provides many
obstacles to damage growth. Accordingly, there is the potential for greatly improved resistance
to impact damage growth. Unfortunately, there are also negative effects due to the fiber tow

interlacing. The fiber tow curvature reduces the effective in-plane moduli. The curvature also

1 Correspondence and proofs should be send to Dr. John D. Whitcomb, Texas A&M

University, Aerospace Engineering Department, College Station TX 77843-3141; telephone
number: 409 845 4006.



induces many local stress concentrations which can result n carly diffusc damage initiation,
particularly in the matrix. The fabrication process is not benign. For example, weaving involves
much mechanical handling of unprotected fibers (i.c. fibers which are not embedded in matrix).
Stitching of textile preforms to increase delamination resistance has the side cffects of breaking
fibers and inducing local fiber curvature. Optimal design requires the capability to predict both
the positive and negative effects of potential textile fiber architectures. Unfortunately, the
complex fiber architecture is difficult to analyze. Accurate analysis requires accurate geometric
representation and constituent properties, such as fiber and matrix properties and fiber volume
percentage. For textile composites there is particular difficulty in determining the actual fiber
tow geometry and developing a three-dimensional model which can be analyzed. There have
only been a few attempts at detailed three dimensional analysis (eg. Refs. [1-3]). Even the
accuracy of these models for local stress calculation is an open question because of the
uncertainties in the input data (i.e. the approximation of tow geometry and other properties).
Most of the analyses to date have been similar to laminate theory in level of approximation or
detailed two dimensional (2D) or quasi-three-dimensional (Q3D) numerical analyses of a
“representative” cross-section (eg. Refs. [4-7]). As the schematic in Figure 1 shows, there is no
such “representative" cross-section, even for a plain weave composite. While such 2D or Q3D
analyses are likely insufficient for accurate prediction of local stress states, they are useful for
obtaining insight about the effects of fiber tow waviness on effective moduli and strengths. In
fact, the results in this paper, which are based on 2D analyses, fall into this category.

The analysis of textile composites is in its infancy as compared to laminated composites.
There are many aspects of the behavior of these materials which have not even been examined,

much less accurately described. The objective of this paper is to begin to address one question



about the behavior of plain weave composites: “How does the presence of a boundary affect the
stiffness and stress distribution in a representative unit cell? The boundary surfaces referred to
here are those present due (o finite thickness. Three nominally simple boundary conditions were
considered herein: in-plane extension, transverse shear, and flexure. Configurations of different
thicknesses were analyzed using 2D finite elements. The analyses were performed using
conventional elements and multi-field macro elements (reference 8). Macro elements are defined
to be elements which contain internal microstructure. The multi-field elements are a form of
reduced substructuring. The macro elements permitted analysis of quite large models without
requiring huge amounts of computer memory and cpu time. Of course, a few macro elements
are not as accurate as using a huge collection of conventional elements. Accordingly, one
additional objective of the paper is to evaluate the performance of macro elements for simple
configurations.

The following sections will begin with a discussion of the configurations studied. Then
the results will be discussed. First effective extensional, shear, and flexural moduli will be

discussed. Then the effects of boundaries on stress distributions will be discussed.

Configurations

The various configurations studied are all synthesized from a single basic unit cell. This

unit cell will be discussed first. Then boundary conditions for infinite and finite configurations

will be discussed.

Unit Cell

The basic unit cell is shown in Figure 2 . The cell consists of tows running in the x- and

z- directions. In reality there would also be pure matrix pockets, but these were filled with z-



direcction tows in the model used. (Of course, in reality there 1s no typical cross section erther,
as discussed earlier.) The two dimensional approximation implies that the x- direction tow is a
wavy “plate” and the z-direction tows are straight fiber bundles. Obviously these are serious

approximations, so the results presented are intended to be qualitative only. The centerline of

the x-direction tows follows a wavy path described by the function %s‘ml‘-"-. For the results

o
presented herein o=1.58. The thickness of the tow as measured along a line normal to the tow
centerline was held constant. It should be noted that the unit cell selected assumes a symmetric

stacking of the woven mats. There are an infinite number of other possibilities.

Two sets of two material properties were used. They are

Set I
E,, = 100 GPa | E,, = 10 GPa E,; = 10 GPa
vy = 0.35 vy = 0.35 byy = 0.3
G, =5 GPa Gi; =5 GPa G, = 3.845 GPa
Set II
E, = 165.8 GPa E,, = 11.51 GPa E,; = 11.51 GPa
vy = 0.273 vy = 0.273 bpy = 0.33
"Gy, = 15.4 GPa Gyy = 15.4 GPa Gy = 4.17 GPa

These properties were transformed to account for the waviness of the x-direction tow.
Plane strain conditions were imposed to obtain two dimensional properties. Two sets of
properties were used. This is admittedly not optimal. The homogenization analyses were

performed using Set I. The stress analysis results were obtained using Set II.



Periodic Boundary Conditions for Infinite Confieurations

Figure 2 shows a typical unit cell for symmetrically stacked mats before deformation.
If this cell is imbedded within an infinite array of identical cells and displacements or tractions
are imposed “at infinity", then every unit cell will deform identically. The periodicity of the
displacement field can be imposed on a single unit cell, thus permitting the solution for the
infinite domain. The solution for an infinite domain will be useful for comparison with finite
configurations subjected to nominally uniform extension or shear. Using thé coordinate system

in Figure 2a, the periodic conditions can be expressed as

u(a,y) = u(-a,y) + u,

! (1)
v(e,y) = v(a,y) + vy - vy @)
u(x,8) = u(x, -B) + uy - y, 3)
v(x,B) = v(x, -B) + vq- vy )

There are no specified non-zero forces (The net forces are zero at any point inside the infinite
media.). The “load" consists of the values chosen for (u, - uy), (v, - v;), etc. These values
depend on the nominal strain state desired. (Specific values for the different states will be
discussed later in this section. Equations 1-4 impose certain constraints which are not so

obvious, but are worth mentioning, since they are exploited in the finite element analysis. These

constraints are

V3 - VZ - V4 - Vl (6)

V3 - V4 = Vp - vy 8)



These constraints can be obtained from equations 1-4 by substituting in specific vertex values

of x and y. For example, substitute x =« into equation 3.
uw(a,B) = w(a, -B) + uy -y,
But u(e,B) = ujand u(a, -B) = u,. Hence, equation 3 states that u; - u, = u4 - u;. Equations

5-8 indicate that if the nodal displacements at the four corners of the unit cell are used to

calculate the displacement gradients, we find that (93) (-81) (—‘2"—) , and [@) are constant. The
i jo N9y \9Y/, %o

subscript “0“ 1s used to indicate that these are nominal displacement gradients. On a pointwise

basis these are certainly not constant for the obviously inhomogeneous unit cells. Equations 1-4

can now be expressed as

way) = u (ay) + 2a(9‘i) ©)
Ox o
v(o,y) = v (ra,y) + 2a(ﬂ) (10)
ox o
ou
x,8) = u (x, -B +ZB—) i)
u(x u (x, -B) (ay ) (
ov
B) = ,-B) + 28— 12
(,8) = v(x, -B) B(ay)o | (12)

Because of symmetries only part of the unit cell must be modeled. Herein the quarter unit
cell shown in Figure 2(b) was modeled. If all the symmetries had been exploited, only

one-eighth of the unit cell would have to be modeled. For convenience the coordinate system

is shifted to the center in Figure 2(b).



FFor extension loading the boundary conditions are quite simple. The constraints imposed

for nominal o, loading are

u(—-g—,y) =0 u(%,y) = specified constant value
(13)
v(x, —%) =0 v(x, %) = constant, but unknown

Nominal g loading (which was not considered herein) would be very similar. For

nominal o, load the boundary conditions are

)Y

specified constant value

specified constant value
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The boundary conditions in equations 14 state that the displacements normal to an edge

are anti-symmetric (and unknown except at the vertices). The tangential displacements are

constant along an edge and are specified.

Boundary Conditions for Finite Confieurations

Extension, shear, and flexure loading were considered for a wide range of specimen
thickness (in the y-direction). Hence, the various meshes had different numbers of unit cells.

For extension loads the boundary conditions were like those in equation 13 if one considers «



and 3 10 be the dimensions of the entire mesh, rather than just a quarter unit cell except that the
top surface was traction free. Hence, the normal displacement “v* was not constrained to be

constant along the top. For shear load all boundary displacements were constrained to follow the

deformation u = cy and v = cx. Consequently, the boundaries remained straight after

deformation for shear loading.
IFor flexure loads the top and bottom surfaces of the model were traction free. A linear

variation of normal displacements were imposed on left and right ends of the model.

Results and Discussion

There are two types of results which will be discussed. The first will 1llustrate the effect

of specimen thickness on effective moduli. The second will illustrate the effect of unit cell

location on stress distributions.

Effective Moduli

For nominally simple deformation states, the effective engineering properties are expected
to converge to constant values as the specimen thickness increases. Figure 3 shows the variation
of the normalized effective E,. Figure 3a shows the vanation of the average E, with the number
of unit cells. The E, is normalized by the E, for an infinite array of unit cells modeled using
conventional finite elements. The three curves were obtained using conventional finite elements
and 8-node and 12-node multi-field macro elements. The 8-node macro element must be
inherently a little too stiff, since it converges to a value approximately one percent too large.
The 12-node macro element agrees very well with the conventional finite element results. For
8 unit cells through the thickness the effective E, 1s within about one percent of convergence.

This indicates that a specimen would need to be 8 unit cells thick to give an effective E, within



one percent of a very thick specimen. Figure 3b shows the variation of the effective B with
position for a configuration which has eight unit cells through the thickness. The effective E,
for each quarter unit cell was calculated based on the strain energy in the region. This is not a
rigorous definition, but it does offer some insight. The figure shows that the boundary quarter
unit cell is about 18 percent softer than an interior quarter unit cell. The next quarter unit cell
is about 5 percent too stiff. The third quarter unit cell has almost exactly the same stiffness as
cells which are much further from the boundary. There is an obvious boundary effect, but it dies
out very quickly.

Figure 4 shows the effect of model size on normalized effective shear modulus G,,.
In contrast to E,, the shear modulus converges from the stiff side. This difference is a
consequence of the boundary conditions imposed. For E, there were free surfaces. The traction
free condition permitted warping deformation to occur more easily near the free surface than in
the interior, so the boundary caused softening. In contrast, all of the finite size shear specimens
had specified x- and y- displacements over the entire boundary. This fully constrained boundary
deformation resulted in larger effective G,, for smaller specimens. Figure 4 also shows that
8-node macro elements perform poorly in shear. The 12-node macro elements perform quite
well. It is interesting to note the distribution of the strain energy in a finite size shear model.
The bar chart in Fig. 5 shows the strain energy in each quarter unit cell for a 3x3 array of unit
cells. The effect of the boundary on the strain energy distribution is obviously quite complex.

Figure 6 shows the variation of normalized flexural modulus with model size. The
flexural modulus is defined to be (flexural stiffness)/I, where I = the second moment of the

area. The flexural modulus in Figure 6 is normalized by the value for a configuration which is



ten cells thick. The flexural modulus converges more slowly than the extensional modulus. The

12-node macro element performs very well. The 8-node macro clement is a little too stff.

Stress Distributions

Figures 7-9 illustrate the effect of a free surface on stress distributions. Distributions are
shown for extension, shear, and flexure. The stresses shown are evaluated with respect to the
xy (global) coordinate system.

Figure 7 shows the stress distributions for extenéion loading for three unit cells from two
different configurations. One configuration had two unit cells through the thickness. The other
had six unit cells through the thickness. The locations of the unit cells considered are indicated
by shading in the figures. The waviness of the x-direction tow and the inhomogeneity causes a
complicated variation of all three stresses. The ¢, variation in the longitudinal tow is dominated

by flexure induced by tow straightening, as shown by the locations of maximum and minimum

o- The g, is largest where the tows contact. The axyis largest where the tow rotation is largest. -

There are both striking similarities and differences in the stress distributions for the three
unit cells. Figure 7 shows that the interior and exterior unit cells have very different stress
distributions. There is.obviously a significant free surface effect. The exterior unit cells in
Figure 7 have very similar distributions for all three stress components. This suggests that for
extension load the response of the exterior unit cells is not very sensitive to the total specimen
thickness.

~ The interior unit cell exhibits almost the same symmetries that one would expect from
a cell embedded inside an infinite array. Also, the interior half of the exterior unit cells has
stress distributions which are very close to those for the lower half of the interior unit cell.

Apparently the free surface effect does not propagate very far into the interior.

|



Figure 8 shows the stress distributions for shear loading. Single unit cell and 3x3 unit

cell configurations were studied. Only the oyand o, distributions are shown, since o, was quite

small. In this case there arc no free surfaces. (Displacements were specified along the entire
boundary.) As was the case for extension, the nterior and exterior response is different. The
interior unit cell is located in the middle of the finite element model. Hence, the symmetries
exhibited by the interior cell do not indicate the attenuation of boundary effects. In contrast to
extension load, Figure 8 shows that for shear load the response of the boundary unit cells is very
sensitive to total specimen size. Further studies are needed to determine the boundary layer
thickness for shear loads.

Figure 9 shows stress distributions for flexure loads. Only exterior unit cells are
compared. The single unit cell model was subjected to a combination of extension and flexure
so that the loading would be comparable to the exterior unit cell of the thicker model. The
thicker model was subjected to pure flexure. Both models have free surfaces at both the top and
bottom. The maximum o, does not occur at the free surface. This is because local flexure of the

wavy fiber tow as it tries to straighten attenuates the o,. The top halves of the two unit cells in

Figure 9 have very similar o, oy, and o, distributions. The lower halves exhibit much more

differences. This is not surprising since the lower surface of the single cell is traction free but
the lower surface of the cell from the thicker model is not. These results further indicate that
there 1s a free surface effect (in this case, from the lower surface of the single unit cell model),
but that the boundary layer is quite small. Finally, it should be noted that the stresses were lower

for the flexure case than for the extension case even though the maximum nominal axial strain

was .001 for both.



Conclusions

Boundary effects were studied for woven composites subjected to in-planc extension,
shear, and flexure. Effective moduli and stress distributions were calculated for configurations
ranging from very thin to very thick. Only two dimensional models were studied. Since woven
textiles are really three dimensional, these two dimensional results should only be interpreted
qualitatively. Boundary effects were significant both in terms of stiffness and stresses.
A specimen thickness of 6-8 unit cells was required to obtain moduli within about 2% of that
for very thick specimens. For extension and flexure loading the stress distribution in exterior
unit cells were quite insensitive to total specimen thickness. There appeared to be a characteristic
response of boundary cells. Also, the boundary effect did not propagate very far into the
interior. The response for shear load was more complex than for extension and flexure. Further

work is needed to characterize boundary effects for shear loads.
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FFlieure 8. Stress contours for a two-dimensional model of a plain weave composite under
shear (nominal shear strain = .001).
(a) Transverse Stress

) Shear Stress

Figure 9. Stress contours for a two-dimensional model of a plain weave composite under

bending (nominal axial strain at top surface = .001).
@) Axial Stress
) Transverse Stress

(c) Shear Stress
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Abstract

Global/local analysis is essential for textile composites because of their unusually large
microstructure. Homogenized engineering properties were used in this study to obtain global
solutions. The response of a local region was approximated by several fundamental strain or
stress modes. The magnitudes of these modes, which were determined from the global solutions,
were used to scale and superpose solutions from refined analyses of the fundamental modes, thus
obtaining a refined local solution. Results from numerical experiments showed that the use of
homogenized engineering properties often results in significant errors in prediction of global
response, especially at boundaries. Also, the local predictions were very sensitive to the choice
of fundamental modes.

Introduction

Recently there has been an increased interest in textile composites because of potential
increases in damage tolerance and decreased cost relative to tape laminates. These composites
consist of a textile preform which is impregnated with resin. The interlacing used in making a
preform can be accomplished by weaving, braiding, or knitting. Figure 1 shows examples of two
weave architectures: a plain weave and a 5-harness satin weave. (The resin pockets are removed
in the figure so that the fiber tows can be seen.) Textile composites all have very large
microstructure compared to traditional tape laminates. In fact, the "microstructure” can be of
the same scale as some of the structural dimensions.

One of the techniques proposed for analyzing textile composite structures is to use
homogenized engineering material properties or some other measure of effective properties for
a global analysis. This avoids the impossible burden of modeling the microstructure discretely
in a structural model. To determine the details of the stress and strain distributions, subsequent
analyses are performed using a refined model of a representative unit cell. The boundary
conditions for these subsequent analyses are determined from the results of the global analysis.
Such analyses have been discussed previously (e.g., References 1-4). This multi-level procedure
could be considered a global/local method and will be referred to as such herein. References 1
and 3 discussed the accuracy of this procedure if one uses special elements (referred to as macro
elements) for the global analysis. However, this author is not aware of any study which
evaluated the accuracy of a global/local procedure for textile composites based on using
homogenized engineering properties for the global analysis.



The objective of this paper is to describe two global/local procedures which use
homogenized engineering material properties to expedite global stress analysis of textile
composites and to determine the errors which are inherent in such analyses. One of the key
questions is whether the use of homogenized engineering properties is adequate when the
microstructure is large. To simplify the discussion and numerical experiments, only
two-dimensional models will be examined. Admittedly, textile composites are fully 3D in their
geometry, but the trends determined from 2D models are expected to be qualitatively correct.

In the following sections the theoretical basis will be described first. Then the

configurations studied will be described. Finally, the results of the numerical experiments will
be discussed.

Theory

This section will describe the global/local procedures used. Figure 2 shows a schematic
of the global/local analysis procedure. In this sketch the shading identifies the region which will
be analyzed further using a local model. The region to be analyzed using a local model is shown
isolated from the rest of the global model. After completing the global analysis, the boundary
nodal displacements (u;, v;) and forces (F}, F;) are known. This boundary information is used
to determine the appropriate loading conditions for a refined local model. There are many
possibilities for determining these boundary conditions. In this particular study the boundary
information was used to quantify the magnitudes of selected fundamental strain or stress modes.
Details of the various steps are discussed in the following subsections. First, the term
homogenized engineering properties will be defined. Then the fundamental macroscopic strain
and stress modes will be described, including an explanation of how the magnitude of the modes
were determined.

Homogenized Engineering Properties

A unit cell is the basic building block which can be used to synthesize a woven
composite. In this paper the woven mats are stacked symmetrically, so the unit cell consists of
one wavelength of two mats. Homogenized engineering properties for use in the global analysis
were determined by analyzing an infinite array of unit cells subjected to macroscopically constant
stress states. Hence, every unit cell in the array experiences the same deformation. Periodic
boundary conditions were applied to a single unit cell to make it behave as though it was
embedded within an infinite array. Details about the periodic boundary conditions can be found
in Reference 5. The homogenized engineering properties were obtained by equating energies in
the homogenized medium to that in the actual unit cell.

Fundamental Macroscopic Strain and Stress Modes

In the current study the local model consisted of a refined mesh of a unit cell. In general,
the local model could be smaller or larger. The loading for this refined unit cell was determined
from the nodal displacements (u', v) or forces (Fi, F}) in the global model at the nodes which
surround the region of interest. The local model typically has many more nodes along the
global/local boundary than the global model. Hence, the dimensionality of the local model along
the global/local boundary must be reduced. One technique to reduce the dimensionality is to



limit the response to a few macroscopic strain or stress modes. In this paper the response of the
local region was characterized in terms of five strain or stress modes. These modes are:

Strain modes:

€ constant mMacroscopic e,
e, © constant Macroscopic e,
eo, @ constant macroscopic e,
e,,: constant gradient of macroscopic e, with respect to y
e‘,’., : constant gradient of macroscopic e, with respect to x

o. : constant Macroscopic o,
o, : constant Macroscopic o,
oy, @ constant mMacroscopic o,
oy, : constant gradient of macroscopic o, with respect to y
o,,: constant gradient of macroscopic o, with respect to x

There are interior and exterior versions of some of these modes. There are neighboring
unit cells on all sides for interior modes and on only two sides for exterior modes. Figure 3
shows deformed finite element meshes which illustrate the five interior stress modes. The
shaded rectangles indicate the original mesh size and shape. The interior modes were used for
analyzing interior cells. A mixture of interior and exterior modes were used for analyzing
exterior cells. The mix is listed below for displacement (strain modes) and force (stress modes)
based superposition.

Strain Modes Stress Modes
Mode Version Mode Version
e interior ol exterior
e interior o, interior
e;, interior oy,  interior
e,  exterior oy,  exterior
e,, interior o), interior

Only a few exterior modes were used. This is because the free surface of the exterior cell was
ay = constant line. Some exterior modes, such as a oy(’ mode, do not exist for such a cell.

The technique for imposing boundary conditions for the various modes is described in
References 5 and 6. The techniques used to determine the magnitudes of the modes is discussed
in the following two sections.



Strain_Mode Superposition The global/local displacement field was assumed to be
describable by the following bi-linear approximation in x and y.

u=a+bx+cy+dxy 0
v=e+fx+gy+hxy

The eight constants a-4 can be determined by requiring that equation 1 match the displacements
at the corner nodes of the local region. The macroscopic strain modes can be obtained by
differentiation of the equations. The equation for &,, was further simplified by evaluating it at
the unit cell centroid and taking it to be constant for the entire global/local boundary. This

resulted in five strain modes: €, €, €’,,, €’,, and €, .. In particular,

€ =b+dy
ey=g+h.x (2)

exy=c+f

The coefficients b, d, g, h, and c+f are the magnitudes of the five fundamental strain modes.

Stress Mode Superposition This technique is similar to the strain mode superposition
method. In this case the nodal forces from the global analysis are used to determine the
magnitudes of five fundamental stress modes. These fundamental modes were described earlier.
This section will describe how to determine the magnitudes of these modes.

The first step is to express the tractions T, and T, acting along the global/local boundary
in terms of the stresses.

T =0on +o, n
x xx yx'y (3)
Ty =0, n, +ao.n,
The relationship between these tractions and the equivalent nodal forces for a single
element can be derived using the principle of virtual work. The result is

F; = TxNi( )dS
‘ [T @)
F, = [T,N(s)ds

where
i = 1, number of boundary nodes
N; = interpolation functions

In this paper the local region is rectangular and aligned with the global xy axes so dS is
either dx or dy. The total nodal forces for each node along the entire boundary are obtained by



summing the contributions from each element. Next the average stresses for the entire local
region are assumed to be given by

G, =atby
oy=c+dx ®))

[ N 4
xy

These expressions for stresses are used in equations 3 and 4 to determine the equivalent
nodal loads. Since there are many more known nodal forces (and hence more equations) than
unknown coefficients (a-¢), a least squares procedure is used to solve for the unknowns.

Once the coefficients are determined, they are used to scale and superpose the
fundamental stress modes described earlier.

Configurations

A very stubby beam was subjected to three types of loading: constant moment, distributed
transverse shear at the end, and distributed transverse loading along the lower surface. More
precisely, the conditions were: (see Figure 4)

Constant moment: Transverse end load: Distributed lateral load:
u(0,0) =v(0,0)=0 u(0,y) =v(©0,y) =0 u(0,y) =v(0,y) =0
~a;9%(—4.5,)0 =-01 Ty(4.5,y) = constant Ty(x,-3) = constant

ou
~—(4.5,y) =.01
P 4.5,y

The beam consisted of 3x3 array of unit cells. The ratio of wavelength to mat thickness
gives a measure of the waviness of the fiber tows. In this study this ratio (A/k) was 1/3.
The following material properties were assumed:

Fiber tow [Ref. 6] Matrix pockets Homogenized properties
E_=206.900 GPa E =345 GPa E_=36.494 GPa

E = 5171 GPa E, =345 GPa E, = 5225 GPa

E,= 5171 GPa E, =345 GPa E, =36.494 GPa:

V= 0.25 Vy T 0.35 I 1.078

v, =025 v, =035 v, =0.154

v =025 v, =035 v, =0.154

G,, =2.386 GPa G, =128 GPa G, =3.145 GPa

GyZ =2.386 GPa G,= 1.28 GPa G, = 3.145 GPa

G,, =2.386 GPa G, =128 GPa G, =2.000 GPa

Figure 4 shows typical meshes which were used in this study. The reference mesh used
5041 nodes and 1728 bi-quadratic elements to model nine unit cells. The homogenized property
mesh used 217 nodes and 36 bi-cubic elements. The refined local mesh had 593 nodes and 192
bi-quadratic elements. The shading indicates the two unit cells (one interior and one exterior)



which were analyzed using global/local analysis. Obviously, there are far fewer equations
involved in the global/local analysis than in the conventional analysis used to obtain a reference
solution.

Results and Discussion

The errors in a global/local analysis are the cumulative result of errors at the various
stages in the procedure. To improve on a procedure requires that one know where errors are
being introduced. Accordingly, the following discussion will begin with an evaluation of the
predicted global response and finally examine errors in the predicted local stress distributions.

To help evaluate the accuracy of the global analysis, the deformation of the reference
and homogenized property meshes were compared. Figure 5 shows deformed finite element
meshes for the three load cases. The meshes are overlaid to aid the comparison. The
inhomogeneity in the reference mesh causes local distortions which should not (and do not) occur
when homogenized properties are used. In Figure 5a (for a constant moment) the agreement
appears excellent, except for the local distortion. This apparent accuracy is an artifact of the
loading, which consisted of specified normal displacements on the left and right sides. The strain
energy (and required moment) in the homogenized property mesh is 40% too large. In Figures
5b and Sc the loading consisted of specified forces. The agreement between the meshes is fair
for these cases. Comparison of the strain energies in the reference and homogenized property
models gives a scalar measure of the agreement in the predictions. The error in strain energy
for the entire model was quite small (-6.6% for the transverse end load case and 2.6% for the
distributed lateral load case). Also shown are magnified views of one interior and one exterior
unit cell for each load case. (See Figure 4 for the location of the cells.) To expedite the
comparisons, the rigid body motion of the unit cells was subtracted before plotting. Removing
the rigid body rotation permits the unit cells to be aligned for comparison. When removing the

rigid body rotation, it is important that the linear definition of rotation (i.e. rotation = ou ~?)
X

be used. For example, consider the beam in Figure 6. The beam was subjected to a moment
at the right end. Contrary to appearances, all the unit cells have the same strain distribution.
If the rigid body rotation is removed using the linear rotation formula, the deformed meshes for
each unit cell will also be identical.

The errors in the strain energies for the individual cells are tabulated below :

Constant Moment Transverse End Distributed Lateral
Load Load
Interior | Exterior | Interior | Exterior | Interior | Exterior
Reference 59520 415860 613764 465024 160320 68400
Homogenized 46152 599960 513120 394740 136956 66600
Error (%) -22 44 -16 -15 -15 -3

The simplicity of the loading in some cases allows one to explain the source of the errors. The
-22% error for the interior cell of a beam subjected to constant moment resulted from the



effective extensional modulus (which is what was used) being 22% smaller than the effective
flexural modulus. For the interior cell of a beam subjected to transverse end load, there is both
flexure and shear. The shear contribution to strain energy is calculated accurately but the flexure
contribution is again low by 22 %, which resulted in an net error of -16%. For the exterior cell
of a beam subjected to constant moment the dominant deformation mode is extension. There is
also some flexure. The 44 % error in strain energy resulted from using the effective extensional
modulus (which is based on infinite array analysis) throughout. In reality, the extensional and
flexural modulus for exterior cells is much smaller than the effective extensional modulus for
an infinite array. These errors illustrate the problems in using effective engineering properties
for this class of materials.

As discussed in the theory section, the nodal displacements and forces were used to
determine the magnitudes of the fundamental strain and stress modes, respectively. There is
inherently some error in this approximation, regardless of the accuracy of the global analysis.
This is because in general the actual behavior cannot be matched by just the modes selected.
However, by calculating the magnitudes of the modes using the reference mesh, one obtains a
baseline approximation which is about as good as can be expected. Table | summarizes the
results.

For pure bending the strain modes for the interior cell are identical for the two meshes,
but this is not a sign of accuracy, since the specified displacement loading required this identity.
There was a -33% error in the constant ¢, mode for the exterior cell. The other two non-zero
modes were exact, which again was due to the boundary conditions. The error in the stress
modes depended on the location of the cell and the particular mode. The importance of a
particular mode cannot be seen in Table 1 . The numbers in these tables are used to scale the

stress distributions from the fundamental solutions, i.e., o, =c%o; where ¢* = magnitudes in the

table and of = stress distribution for the “«" mode. Both the ¢* and o] must be considered
when determining the dominant modes for a particular load case. The dominant stress mode for
the interior cell was the gradient of g, mode, which was off by -10%. In contrast, the dominant
mode (constant ¢,) for the exterior cell was off by 30%. For the transverse end load case the

. o} [¢] 0 0 . : .0 O 0 0 0 0
dominant modes were €., €., o,,, and o, for the interior cell and ¢,, ¢, €,, 9;, 0,,, and o,

for the exterior cell. The largest errors in the dominant modes were for efy and o‘;y. These
errors tended to be quite large. For the distributed lateral load case most of the modes were
significant. (The eg', and og; modes were not significant.) The errors in the modes tended to
be larger than for the other two load cases.

The magnitudes of the modes in Tables 1(a) and 1(b) can be used to scale and superpose
displacements for the fundamental modes. These superposed displacements were determined for
“interior and exterior cells. The deformed meshes are shown in Figures 7 and 8 for strain and
stress mode superposition, respectively. As was done in Figure 5, the rigid body components
were subtracted to make the comparisons of the unit cell deformations more accurate. The
thicker lines indicate the superposition results. The results labeled “Reference Superposition”
were obtained by using the reference mesh to determine the magnitudes of the modes. The
“Reference Superposition” results show that even if a global analysis is exact, the local
deformation cannot in general be represented in terms of a few fundamental modes. Regardless
of the type of loading, the interior behavior is more closely approximated than the exterior:
behavior. Strain mode superposition appears to be more accurate for interior cells. In contrast,



stress mode superposition appears to be more accurate for exterior cells.

The next step was to determine the accuracy of the calculated stresses. Three types of
solutions were examined:

1) the reference solution

2) the global/local solution in which the global analysis used the reference mesh to
determine the modal components

3) the global/local solution in which the global mesh used homogenized material
properties.

The results are presented two ways. First, just the peak stresses for each load case and analysis
type will be summarized in tabular form and then a few stress contour plots will be discussed.

The peak stresses are tabulated in Table 2. The errors in the global/local stress
calculations varied over a wide range. The simplicity of the loading for the constant moment
case eliminated one source of error... that related to determining the average strain field using
five strain modes. The second potential source of error was in determining the local stresses
from the fundamental strain modes. This was no problem for the interior cell; the error was
essentially zero. In Reference 7 it was shown that unit cells at least one cell away from a free
surface behaved very much like ones embedded in an infinite array. Since the fundamental strain
modes (which included two bending modes) were based on infinite arrays, the accurate
prediction is no surprise. In contrast, the errors are significant for the exterior cell. Even when
the refined reference mesh was used to determine the magnitudes of the different modes, the
errors were not negligible. The stress mode superposition method tended to perform better for
exterior cells than the strain mode method. The response of an exterior cell is complex and
hence poorly represented by the particular few strain or stress modes considered. The errors due
to modal reduction increased with the complexity of the applied load. For the distributed lateral
load case the errors were significant for the interior cell and intolerable for the exterior cell.

Obviously, the interior and exterior unit cells experience different loading and different
modes are dominant for the two cells. Hence, the larger errors for the exterior cell could be
due to errors associated with particular modes, rather than the location of the cells. This was
checked in an approximate sense by adding a layer of unit cells to the top and bottom of the
current global model. Global/local analysis of this thicker beam was performed for transverse
end load case. The errors in the peak stresses for the unit cell which had been on the exterior
for the thinner model were now much less. This suggests that the behavior of an exterior celi
is inherently more complicated than that of an interior cell.

Examination of errors in predicted peak stresses gives only a limited appreciation of the
accuracy (or inaccuracy) of the predictions. Figures 9 and 10 show stress contours for the
transverse end load case for interior and exterior cells. The contours for the interior cell (Figure
9) for the global/local analysis match very closely with the reference solution. The contours for
the exterior cell (Figure 10) are not as close, but still seem to agree fairly well, even though the
errors in the peak stresses are up to 26%. Peak stresses will probably not be useful for
predicting failure, since they occur at a point (or at least a very small region). A critical stress
criterion will probably have to consider the average stress in some characteristic volume. The
visual similarity of the contours in Figures 9 and 10 suggests that when global/local analysis 1s
used, the errors in a practical failure criterion might not be as bad as the errors in a peak stress
criterion. This visual evaluation of the similarities in the contours in Figures 9 and 10 is
subjective and could be wrong. A more objective method is badly needed.

One technique which was considered was plotting the tow area which had a stress greater



than a particular value. The reasoning is that if a large stress occurs over only an extremely
small region, then the stress calculation is suspect, since the scale is too close to that of the fiber
diameter. Figures 11 and 12 show results for ¢, for an interior and exterior cell, respectively
for the transverse end load case. Two graphs are shown in each figure : one which includes the
entire stress range, and the other which zooms in on the peak stress region. Results from the
four analyses agree quite well for the interior cell. Although the homogenized superposition
technique has a 15 percent error in predicting the peak stress, the distribution is predicted fairly
well. If the failure criteria requires that a particular volume be at a critical stress, the prediction
would be in error about 15 percent for very small critical volumes, but the error would be less
for larger critical volumes. Figure 12 shows analogous results for the exterior cell. The errors
are larger than for the interior cell, but the trend is the same, ie. for larger critical volumes the
error in failure prediction is less than for very small critical volumes.

Concluding Remarks

Global/local stress analysis techniques based on the use of homogenized properties for
the global analysis were evaluated. A very stubby beam containing nine unit cells was subjected
to three types of loading. Considering the strong macroscopic stress and strain gradients relative
to the microstructure these were probably fairly severe tests. For force type loading the overall
deformation of the beam was not always predicted very well using homogenized properties. For
larger configurations with more unit cells (and hence more homogeneous microstructure) the
accuracy is expected to be considerably better. The accuracy of the calculated stresses was not
too bad for interior cells, but was poor for exterior cells. This is not surprising based on earlier
work on free boundary effects.

Regardless of how a global solution is obtained, there is considerable difficulty in using
the crude nodal force and displacement information from the global mesh to determine
appropriate load conditions for the local mesh. In this paper a modal technique was used. For
the constant moment and transverse end load cases this technique performed well. For the more
complicated case of distributed lateral load the performance was only fair for the interior cell
and poor for the exterior cell, even when a refined global mesh was used.

There are several steps (and inherent approximation at each step) in global/local analysis.
This study was just a beginning. Further work is needed in several areas. Alternatives to
homogenization, such as the macro elements in References 8 and 9 need to be evaluated. Other
techniques for imposing the global solution on a local model also need evaluation, including
additional types of fundamental modes and the use of smaller local regions. Finally, more
realistic configurations need to be identified and studied. Otherwise it is difficult to assess the
significance of the errors in the various global/local techniques for practical applications.
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Table 1 Modal magnitudes for interior and exterior unit cells from reference model and homogenized model.

(a) Strain modes

Interior Cell Exterior Cell
Global 0 0 0 0 0 0 0 0 0 0
Analysis €y €y 3 3 €y x I3 €y €y €y € x
Constant Moment
Reference 0.00E-0 0.00E-0 0.00E-0 1.11E-3 0.00E-0 2.22E-3 -4.23E-3 0.00E-0 1.11E-3 0.00E-0
Homogenized 0.00E-0 0.00E-0 0.00E-0 1.11E-3 0.00E-0 2.22E-3 -2.83E-3 0.00E+0 1.11E-3 0.0CE-0
Transverse End Load
Reference 0.00E-0 0.00E-0 | -8.04E-3 7.71E-4 0.00E-0 1.81E-3 -3.38E-3 -3.56E-3 1.04E-3 7.45E-4
Homogenized 0.00E-0 0.00E-0 -7.34E-3 5.29E-4 0.00E-0 1.28E-3 -1.53E-3 -4.03E-3 0.75E-3 3.39E-4
Transverse Lateral Load
Reference -1.60E-4 9.30E-4 -3.85E-3 3.41E4 6.50E-5 3.20E-4 -7.21E-4 -1.84E-3 1.39E-4 3.86E-4
Homogenized -1.87E-4 8.13E-4 -3.55E-3 2.68E-4 3.60E-5 2.18E-4 -2.55E-4 -2.12E-3 1.38E-4 1.68E-4
(b) Stress modes
Interior Cell Exterior Cell
Global
Analysis &, &, o, o, o &, &, o, &’ &,
Constant Moment
Reference 0.00E+0 | 0.00E+0 | 0.00E+0 | 4.60E+7 | 5.33E+4 6.37E+7 -3.35E4+5 | 0.00E+0 | -0.08E+7 | -2.67E+4
Homogenized 0.00E+0 | 0.00E+0 | 0.00E+0 | 4.15E+7 | 0.00E+0 8.31E+7 0.00E+0 0.00E+0 4,15E+7 0.00E+0
Transverse End Load
Reference 0.00E+0 | 0.00E+0 | -2.11E+7 | 3.21E+7 | 3.63E+4 5.08E+7 1.13E+5 | -1.04E+7 | 5.58E+6 | -5.61E+4
Homogenized 0.00E+0 | 0.00E+0 | -2.20E+7 | 1.94E+7 | 0.00E+0 4.74E+7 3.60E+5 | -1.14E+7 | 2.93E+7 3.22E45
Transverse Lateral Load
Reference 2.33E+5 | 4.83E+6 | -1.02E+7 | 9.82E+6 | 2.99E+5 1.48E+7 1.25E+6 | -5.20E+6 | -1.81E+6 1.02E+5
Homogenized || -3.91E+5 | 5.18E+6 | -1.07E+7 | 7.75E+6 1.88E+5 1.39E+7 1.56E+6 | -5.78E+6 | 5.52E+6 1.92E+5




Table 2 Reference peak stresses and corresponding global/local stresses (%e = percent error)

Global/Local Interior Cell Exterior Cell
Analysis
o, %e o, %e Oy %e g, %e o, %oe Oy %e
Constant Moment
Reference 1.22E+08 3.12E+07 5.02E+07 2.53E+08 5.95E+07 9.71E+07
Reference Sup:
Displacement Fit || 1.22E+08 0 3.12E+07 0 5.02E+07 0 2.21E+08 | -13 | 4.01E+07 | -33 9.09E+07 -6
Force Fit 1.22E+08 0 3.12E+07 0 5.02E4-07 0 2.81E+08 11 6.39E4+07 8 8.53E+07 | -12
Homogenized Sup:
Displacement Fit || 1.22E+08 0 3.12E+07 0 5.02E+07 0 2.40E+08 -5 5.66E+07 -5 9.96E +07 3
Force Fit 1.10E+08 | -10 [ 2.82E+07 -10 | 4.54E+407 | -10 3.68E+408 45 8.60E+07 45 14.30E+07 | 47
Transverse End Load
Reference 2.47E+08 6.10E+07 -1.15E+08 3.01E+08 5.64E+07 -1.03E+08
Reference Sup:
Displacement Fit || 2.47E+08 0 6.07E+07 -1 -1.16E+08 | 2.00E+08 234 | 4.68E+07 | -17 | -1.03E+08 0
Force Fit 2.36E+08 -5 5.80E+07 -5 -1.11E+08 | -4 2.37E+08 | -21 5.96E+07 6 -1.04E+08 ]
Homogenized Sup.
Displacement Fit || 2.11E+08 | -15 | S5.13E+07 -16 | -0.99E+08 | -14 1.57E+08 48 | 4.90E+07 | -13 | -0.96E+08 | -7
Force Fit 2.17E+08 | -12 | 5.24E+07 -14 | -1.00E+08 | -13 2.24E+08 <26 | 6.48E+07 15 | -1.22E+08 | 18
Distributed Lateral load
Reference 1.32E+08 3.38E+07 -6.32E+07 1.14E+08 2.21E+07 -4,93E+07
Reference Sup: .
Displacement Fit || 1.17E+08 | -11 3.23E+07 -4 -5.49E+07 | -13 0.39E+08 -66 1.O7TE+07 | -52 | -1.99E+07 | -60
Force Fit 1.05E+08 [ -21 2.92E+07 -14 | -4.85E+07 | -23 0.70E+08 | -39 | 2.26E+07 2 -2.14E+07 | -57
Homogenized Sup:
Displacement Fit || 1.01E+08 | -23 | 2.71E+07 -20 | -5.06E+07 | -20 0.33E+08 -71 1.42E+07 | -36 | -2.31E+07 | -53
Force Fit 1.05SE+08 ! -21 2.94E+07 -13 | -4.92E+07 | -22 0.67E+08 -41 2.06E+07 -7 -2.35E+07 | -52




Plain weave 5-harness satin weave

Figure 1 Examples of textile architecture.
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Figure 9 Comparison of stress distributions of reference solution and homogenized strain mode
superposition for the interior cell for transverse end load case .
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Figure 10 Comparison of stress distributions of reference solution and homogenized stress mode
superposition for the exterior cell for transverse end load case .
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Abstract

Three-dimensional finite element analysis was used to sim-
ulate progressive failure of a plain weave subjected to in-plane
extension. The loading was parallel to one of the tow directions.
The effects of various characteristics of the finite element model
on predicted behaviour were examined. More numerical studies
and comparisions with experimental data are needed to establish
guidelines for accurate progressive failure prediction. Also the
sensitivity of the predictions to the tow waviness was studied. The
predicted strength decreased considerably, with increased wavi-
ness.

Introduction

Textile composites consist of interlaced fiber bundles which
are then impregnated with a matrix material and cured. Figure 1
illustrates the architecture for a plain weave composite. The inter-
lacing of the fibers offers the potential for increased through-thick-
ness strength. There is also the potential for reduced fabrication
costs, since fairly complicated shapes can be formed using textile
machinery. One disadvantage of textiles is the difficulty in predict-
ing their performance. The complex geometry makes detailed
stress analysis quite challenging. The early analyses were based
on modified laminate theory. ( eg. References 1,2) In recent years
there have been a few attempts to discretely model the fiber bundle
architecture and predict internal stress states (eg. References 3-10)
Reference 10 presented a particularly interesting progressive fail-
ure analysis of a plain weave composite. The results in Reference
10 consisted of nominal stress strain curves. The response of the
composite was almost linear for in-plane extension and highly
nonlinear for in-plane shear. The nonlinearity was primarily a
result of progressive damage. However, little information was pro-
vided on damage evolution and load redistribution within the com-
posite during the loading process. Also, there was no indication of

the sensitivity of the predictions to mesh refinement or other
approximations inherent in such analyses.

This paper has two objectives. The first is to evaluate the
sensitivity of predicted progressive failure to quadrature order,
mesh refinement, and choice of material degradation model. The
second objective is to describe the nature of the progressive failure
process for two weaves with very different waviness. Loading
consisted of a nominally uniaxial stress along one of the fiber tow
directions. Only mechanical loads were considered in this study.
To simplify the response the composite was assumed to consist of
an infinite number of unit cells in all three coordinate directions.

The following sections begin with a description of the basic
theory used for progressive damage modelling. Then the configu-
rations will be described. Finally the results from the numerical
simulations will be discussed.

Theory

There is no “right” way to model damage evolution that is
also practical. It is not feasible to discretely model the damage, so
approximation is unavoidable. Perhaps the simplest procedure to
account for damage in a finite element model is to modify the con-
stitutive matrix at the quadrature points of a numerically inte-
grated finite element. No history effects are included, so the
analysis of the loading becomes a series of elastic analyses. Of
course, there are many possibilities for how to modify the consti-
tutive matrix. Three techniques were used herein. The first method
considered the material totally failed (ie. the entire constitutive
matrix was reduced to essentially zero) when any allowable stress
component was exceeded. This method will be refered to as the
non-selective discount method. Except as noted, this technique
was used in the analyses. The second technique selectively
reduced the rows and columns of the constitutive matrix according
to the particular stress allowable which was exceeded. The third
technique selectively reduced the engineering moduli according to



the particular stress allowable which was exceeded. The scheme
for this selective reduction was based on Reference 10.

Figure 2 gives a flowchart for the progressive failure analy-
sis. First a linear analysis was performed. Based on the calculated
stresses, the initial load was scaled back so that failure would
occur only at points which were within two percent of the maxi-
mum normalized stress. ( The stresses were normalized by the
respective strengths.) The constitutive matrix was modified at the
failure points. Residual forces were calculated and used to deter-
mine the incremental displacements required to restore equilib-
rium. The total displacements were updated and used to determine
the new stresses. If no further failures occured at the current nom-
inal strain state, the nominal strain was incremented to cause fail-
ure. This procedure was repeated until there was total failure or at
least loss of most of the original stiffness.

Configurations

The fiber bundles or tows in the models were generated by
translating a lenticular cross-section along a sinusoidal path. The
waviness ratio is defined to be the ratio of the woven mat thickness
to the wavelength. Except where indicated otherwise, the results
presented are for a waviness ratio of 1/3. More details about the
mesh geometry can be found in Reference 8. The following sub-
sections describe the finite element meshes, the boundary condi-
tions, and the material properties.

Finite Element Meshes

Symmetry in the material and loading was exploited so that
only 1/32 of a unit cell had to be modeled. A wide range of mesh
refinements were used, as shown in Figure 3. The crude mesh had
only 4 elements and 42 nodes. The most refined mesh had 192 ele-
ments and 1049 nodes.

Boundary Conditions

The periodic boundary conditions for a complete unit cell
are quite simple. The appropriate boundary conditions for a 1/32
unit cell are a bit more complicated. Derivation of the periodic
boundary conditions is somewhat tedious, so details will not be
given here. Details can be found in Reference 8. The periodic con-
ditions are listed below. Figure 3 shows the coordinate system
assumed.

u(a/2,y,z) = u,
U(O,yvz) = ‘U(O,y,-Z)
u(x,0,z) = u(x,0,-2)

v(x,a/2,z) = constant
v(0,y.z) = v(0y,-2)
v(x,0,z) =-v(x,0,-z)

w(x,y,c/2) = constant
w(0,y.z) =-w(0,y,-z)

w(x,0,z) =-w(x,0,-z)

The load was controlled by specifying the magnitude of u,,

Material Properties

The unit cell contains two “types” of materials: the tows and
the matrix pockets. Relative to the material coordinate system, the
propertics of the tows are invariant (before damage occurs). Of
course, the properties of the tows are needed in the global coordi-
nate system. Fourth order tensor transformation formulas were
used to perform the required calculations. The rotation angles to
be used in these formulas were obtained at each quadrature point
by using interpolation. This procedure was shown in References 8
and 11 to be preferable to using a single angle for the entire ele-
ment. The particular properties used are listed below. These prop-
erties are from Reference 12.

Tow properties Matrix propertics
Modulus Strength Modulus Strength

E;; 154.27 GPa 2342.0 MPa 3.45 GPa 84.85 MPa
E,; 10.80 GPa 56.6 MPa 3.45 GPa 84.85 MPa
E;; 10.80 GPa 56.6 MPa 3.45 GPa 84.85 MPa
Gy, 747 GPa 48.7 MPa 128 GPa  101.00 MPa
G;3; 747 GPa 48.7 MPa  1.28 GPa 101.00 MPa
G,3 333 GPa 48.7 MPa 1.28 GPa 101.00 MPa
vi;  0.278 0.35

Vi3 0.278 0.35

Va3 0.340 0.35

Results and Discussions

Most of the results in this paper illustrate the effects of char-
acteristics of the finite element model on the progressive failure
prediction. The effects of quadrature order, mesh refinement, and
material degradation strategy will be considered first. Then the
effect of tow waviness on failure behaviour will be discussed.

Figure 4 shows the effect of quadrature order on the stress-
strain curve. The peak stress obtained using 8 quadrature points
(2x2x2), is 10 percent higher than that obtained using 27 or 64
points. Although the peak stress is the same for 27 and 64 points,
damage is predicted earlier when 64 point integration is used. This
sensitivity is not particularly surprising for at least two reasons.
First, when more quadrature points are used, the more extensive
sampling is more likely to find the extremes in the stress field.
Second, when failure occurs within an element and the constitu-
tive matrix is modified, the element becomes inhomogeneous. The
numerical integration effectively fits a polynomial function to the
variation of material properties. Since the properties are very dif-
ferent in the failed and unfailed parts of the element, it is difficult
to obtain a good fit. In fact, there is concern as to whether the
assumed quadratic displacement functions for a 20-node element
are sufficient to obtain a reasonable approximation regardless of
the integration order.

Figure 5 shows the effect of mesh refinement on the predicted
stress-strain curve for two waviness ratios. The 4 element model
predicts the correct trends, but is quite inaccurate. The error is
much worse for the larger waviness ratio. For the 1/6 waviness
ratio, the 32 and 192 element models agree quite well. There is



considerable difference between the 32 and 192 element models
for the 1/3 waviness ratio. Although the response is quite brittle
for both waviness ratios, there is more non-catastrophic damage
before collapse for the larger waviness ratio.

Figure 6 shows the effect of the discount factor on the stress-
strain curve. The stiffness terms at failed quadrature points were
reduced to either .01 or .0001 of the original values. Intuitively,
one might expect to obtain the same result. Figure 6 shows that
there was no difference in the peak stress, but the response was
very different when there is considerable damage.

Figure 7 shows the stress-strain curves obtained using non-
selective discount method, selective reduction of rows and col-
umns in the constitutive matrix (the stiffness terms, not the com-
pliance terms), and the selective method described in Reference
10 . The selective method described in Reference 10 predicts
about a 21 percent higher peak stress than the non-selective dis-
count method.

Figures 8 and 9 show the effect of mesh refinement and wav-
iness ratio on damage accumulation during loading. The black
region indicates the damage zone. The stress-strain curve for a
particular mesh is shown above the results for that mesh. The
points labeled A, B, and C indicate the correspondence between
the strain level and the damage contours. Also indicated are the
stress components which contributed to the damage contour. The 4
element mesh does not perform well at all for the waviness ratio of
1/3, but does a little better for the 1/6 waviness. The 32 element
mesh performs reasonably well for obtaining qualitative results.
Further numerical studies are needed to determine how close the
192 element mesh is to convergence. For the 1/3 waviness ratio the
O3 stress component dominates the damage development up to
the point shown. For the 1/6 waviness ratio G3; plays a part, but
there is also significant cracking of the 90 degree tow due to G,.
Reference 6 had also noted a change in initial damage mode with
waviness ratio.

Concluding Remarks

Simulation of progressive failure in a plain weave compos-
ite is extremely complex. Consequently, only approximate treat-
ment is practical at this time. One of the goals of this paper was to
examine the effect of several approximations on predicted behav-
iour. The one obvious conclusion from this study is that the pre-
dictions are quite sensitive to a number of decisions which must be
made when assembling a finite element model. Further numerical
experiments and comparisons with experimental data are needed
to establish guidelines for accurate analysis of progressive failure.
Another objective of this paper was to describe the effect of tow
waviness on damage accumulation. The results suggest that the
degree of waviness not only affects the stress at which damage ini-
tiates, but also the type of damage which occurs.

Acknowledgements

This research was supported by NASA Grant NAG-1-1324.
James Reeder was the technical monitor. This support is gratefully
acknowledged.

References

1. Ishikawa, T. and Chou. T.W.: "Stiffness and Strength Behavior
of Woven Fabric Composites,” Journal of Material Science,
17:3211-3220, 1982.

2. Ishikawa.T. and Chou T.W.: "Elastic Behavior of Woven Hybrid
Composites,” Journal of Composite Materials, 16:2-19, January
1982.

3. Paumelle, P., A. Hassim, and F, LAnA.: “Composites with
Woven Reinforcements: Calculation and Parametric Analysis of
the Properties of the Homogeneous Equivalent,” La Recherche
AArospatiale, 1:1-12, 1990,

4. Paumelle, P., A. Hassim, and F. LAnA.: "Microstress Analysis
in Woven Composite Structures,” La Recherche AArospatiale,
6:47-62., 1991.

5. Whitcomb, J. D.: "Three-Dimensional Stress Analysis of Plain
Weave Composites," Composite Materials: Fatigue and Fracture ,
ASTM STP 1110, T. K. O'Brien, Ed., Philadelphia: American
Society for Testing and Materials, 3:417-438., 1991.

6. Woo, K.: “Stress and Failure Analysis of Textile Composites,”
Ph.D. Dissertation, Department of Aerospace Engineering, Texas
A&M University, 1993.

7. Dasgupta, A. and Bhandarkar, S.: “Effective Thermomechanical
Behavior of Plain-Weave Fabric-Reinforced Composites Using
Homogenization Theory,” Journal of Engineering Materials and
Technology, 116 :99-105, January 1994.

8. Chapman, C.: “Effects of Assumed Tow architecture on the
Predicted Moduli and Stresses in Woven Composite,” MS thesis,
Department of Aerospace Engineering, Texas A&M University,
1993.

9. Guedes J.M. and Kikuchi N.,“Preprocessing and Postprocessing
for Materials Based on the Homogenization Method with Adap-
tiveFinite Element Methods,” Computer Methods in Applied
Mechanics and Engineering, 83 :143-198, 1990.

10. Blackketter, D.; Walrath, D.; and Hansen, A.: “Modeling
Damage in a Plain Weave Fabric-Reinforced Composite Mate-
rial,” Journal of Composites Technology and Research, 15:2:
136-142, Summer 1993.

11. Avery, William B. and Carl T. Herakovich. 1987. “A Study of
the Mechanical Behavior of a 2D Carbon-Carbon Composite,”
Virginia Polytechnic Institute and State University, Interim Report
66.

12. Naik, R.: “Micromechanical Combined Stress Analysis-MIC-
STRAN, A User Manual,” NASA Contractor Report 189694, Oct.
1992.



0 90 tow
0" tow (fill tow)

(warp tow)

(a) A full unit cell.

(b) A single mat with matrix pockets removed.

Figure 1 Schematic of Plain Weave composite.



Initial linear analysis
Determine maximum failure index (F.I.)

——» Scale load so maximum FI. =1.02

|

Calculate stresses <

l

Failure at any quadrature points ?

Yesl

Modify constitutive matrix
for all failure points

No

Calculate residuals

Solve to determine incremental
displacements

l

Update displacements

Figure 2 Flowchart of progressive failure analysis.
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Part II Software Documentation

Part II documents the software developed as part of this research project. There are three
programs to be documented: a finite element mesh generator named “PWMeshGen”, a finite ele-
ment program named “Flex94”, and a visualization tool named “Plot94”. They will be discussed
in this order. The final section in Part II describes the installation of the software.



PWMeshGen



User’s Manual for PWMeshGen

(Plain Weave Mesh Generator)

A collection of Fortran and C programs were developed to expedite the generation of finite
element meshes for plain weave composites. These programs are currently intended to be run
under the UNIX operating system. However, only a few changes are required for other operating
systems.

The tow path of the plain weave is assumed to be sinusoidal. The user can select between
translated and extruded tows (see Ref. 1). Although several programs are required to generate a
mesh, an executive program has been provided which orchestrates the transfer of data from one
program to the next. Hence, the collection of programs appears to the user to be a single program.
The executive is named PWMeshGen.

To simplify program operation, the input file is a form. This form contains labels which
remind the user of the required data and order of the data. To obtain a copy of the form, simply
execute the program “PWForm” with the command line parameter “filename”, which will be the
name of the generated form. For example, executing the command

PWForm inFile

will generate a file named <inFile>, which is shown in Figure 1. Figure 2 shows a typical finite
element mesh with labels which define the terms in the generated form.

When this file is edited, it is critical than none of the form labels be changed, since the
labels are used to guide input. Once the form is complete the mesh is generated by executing the
command

PWMeshGen inFile

The programs will generate several files, which will be discussed in the next section. Sample data
in the sub-directories “Sample3” and “Sample4” on the distribution media include completed
forms. The file names for these forms are Samples/Sample3/Input/meshl and Samples/Sampled/
Input/mesh2.

Warning

Early in the mesh generation process there are duplicate node numbers. One of the tools
removes the duplicate node numbers. This tool uses a tolerance to determine whether two points
are coincident. This tolerance is hardwired to be .00001. It can be changed by editing the file
MeshClass.C in PWMeshGen/MeshToolSource. Line 140 is

#define EPSILON 1e-5
To change the tolerance, simply change this value and recompile.

Output Files:

Several output files are generated. These files are for use with the finite element program
Flex94. The following files are generated during a typical execution:



File Description

new.flex Main input file for Flex94.

new.sflx Mesh file for Flex94.

new.as Element rotation angle file: single angle.
new.am Element rotation angle file: multiple angle.
mat_list A material list of the elements.

new.flx A simple mesh file used for plotting the mesh

xExtension.mpc

and determining boundary conditions automatically.

Multipoint constraints for extension in the x direction.

xyShear.mpc Multipoint constraints for in-plane shearing.

xzShear.mpc Multipoint constraints for transverse shearing.

ExtSingleConstraints Constraints for extension.

xyShearConstraints Constraints for in-plane shearing.

xzShearConstraints Constraints for transverse shearing.

xExtension.Loads Loads for extension in the x-direction.

xyShear.Loads Loads for in-plane shearing.

xzShear.Loads Loads for transverse shearing.

eighth.flx A simple mesh file for plotting the 1/8th unit cell.

eighth.am Element rotation angle file for 1/8th unit cell:
multiple angle.

eighth.as Element rotation angle file for 1/8th unit cell:
single angle.

References:

1. Chapman, C. 1993. Effects of assumed tow architecture on the predicted moduli and

stresses in woven composites, Master thesis, Department of Aerospace Engineering, Texas
A&M University.



Input File for Mesh Generation Program

Thickness of mat:

Waviness ratio:

Tow type:

Tow elements in z-direction:
Primary elements in y-direction:
Resin elements above and below tows:

Execution flow flags: Type yes beside functions to be performed.

Generate 1/8 unit cell:
Renumber nodes to reduce profile of stiffness matrix:

Tow type: 1=> extruded
2=> translated

*xxkxkkxxxxxx*x*End of Input File For Mesh GeneratorXX%kkkkkkkwkkxxx

Figure 1: Form used to define input for mesh generator.






Appendix A: Use of output files with Flex94

The files generated using PWMeshGen are used in conjunction with the finite element
program Flex94 and the mesh plotting program Plot94. The file new.flex is the main input file for
Flex94. An example of this file is shown in Figure Al. This example specifies that the mesh
new.sflx will be subjected to extension in the x-direction as indicated by lines 6, 26, and 29. Mod-
ifications for other load cases are given below:

For in-plane shear, these lines would need to be changed as follows:
6 ‘xyShearConstraints’

26 ‘xyShear.mpc’

29 ‘xyShear.Loads’

For transverse shearing, these lines would need to be changed to:

6 ‘xzShearConstraints’

26 ‘xzShear.mpc’

29 ‘xzShear.Loads’

And finally, for extension in the z direction, the lines would be:

6 ‘ExtSingleConstraints’
26 ‘zExtension.mpc’
29 ‘zExtension.Loads’

Note that ExtSingleConstraints is also used for extension in the x-direction.
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'end material input'

"loop!

1111
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0000

'end pick'

‘alternate input'

‘new.am'’

'alternate_input'
'xExtension.mpc’

'end of misc_options'
'‘alternate input’
'xExtension.Loads'
'end loads'

'end'

Figure A1l: Typical new .flex file

.25 2.386e9 2.386e8 2.386e92 0 0 0 00 00

.25 2.386e9 2.386e9 2.386e9 0 0 0 0 O

.28e9 1.28e9 1.28e9 0 0 0 0 0 0 O

generated with PWMeshGen.
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FLEX9%4

User’s Manual

Command: fe size

Comments: size = maximum number of terms in global stiffness matrix. If size is omitted, a
default size is assigned by the program. The default size is 1500000.

The analysis of an infinite array of unit cells only requires a single mesh. Such analysis is
useful for determining homogenized engineering properties and stress (or strain concentrations).
Such analysis proceeds much like traditional finite element analyses except that the boundary
conditions are fairly complicated. Utilities have been developed to automatically generate the re-
quired boundary conditions for various load conditions.

Global/local techniques were developed as part of this research project. There are many
possible global/local methods. The ones evaluated used macro elements (Refs. 1-3) in the global
mesh and ordinary finite elements in the local mesh. Two types of macro elements are supported:
single field ( Refs 1, 2) and multi-field (Refs 3). After a global analysis is performed using macro
elements, the detailed stress distributions within a weave unit cell are determined using displace-
ments or forces from the global analysis to determine the boundary conditions for the local mod-
els, which include details of the weave architecture. The global/local analysis software was not
sufficiently automated to release it as part of this software. However, the macro elements are in-
cluded in the finite element program. Reference 4 discusses one of the more promising proce-
dures evaluated.

The input file for Flex94 can be broken into several blocks which must appear in the fol-
lowing order:

1. Mesh Input

2. Material Properties

3. Macro Element Input (Optional)
4. Miscellaneous Options

5. Loads

6. Macro Element Data

7. Failure Analysis

A description of each block is given in the following sections with an example.



‘analysis_type’
‘LINEAR’
‘end_options’

43 2
‘Small Mesh’

‘alternate_input’
sml.msh’

Example:

'standard_input’

‘coordinates’
102 2

‘connectivity’
141234
242336
344876

42 4 979599 100
43 4 100 99 99 101

'define_element_type’
243 1431

0000

1. Mesh Input
Descrintion:

This option allows the user to define the analysis type.
‘LINEAR’ selects linear analysis. This has to be replaced
by ‘SELECT' for Selective discount method or by ‘NSELECT
for Non-Selective discount method.
NumberOfElements DegreesOfFreedomPerNode
Title - Must be in single quotes.

This option allows user to put mesh in another file. Filename must
be on the following line. At end of file 'sml.msh’, 'standard_input’
should be used to return to original file. ’alternate_input’ can only
be used in the original Flex94 input file (eg. you could not use the
command in 'sml.msh’)

Description:

If "alternate_input’ was used, 'standard_input’ would return input to the

original input file. ‘standard_input’ can only occur where a command is
appropriate. For example, it could not appear in the middle of reading

coordinates.

Command to signal start of coordinates.
NumberOfNodes NumberOfCoordinateDimensions
NodeNumber Coordinates

Command to signal start of connectivity.

Element# NumberOfNodesIinElement Connectivity

Connectivity must be specified in clockwise order for 2D elements. For
20-node 3D elements, the order of the nodes is shown in Figure 1.

Command to start element type definition.

ElementType FirstElement LastElement Increment (In this case, ele-
ments 1 throught 43 are of type 243).

End with four zeroes. The relevant element types are listed below:

243 2D element

300 3D element

851-899 single field

801-849 mutlti-field



'select_quadrature_order
21431
0000

'single_constraints’
4010
41 1 1
18 0 1
102 1 1
100 0 1
101 10
000

‘plane’
-1.5 1
-1.5 2
-1.5 2
-1.51
00

O NN = =

‘end_mesh_input’

Command to start selection of quadrature order for each element.
QuadratureOrder FirstElement LastElement Increment
End with four zeros. To obtain stresses, a quadrature order of

2 for 2D and 3 for 3D has to be used.

Command to set single constraints on individual nodes.

NodeToConstrain ConstraintDof1 ConstraintDof2 ...

1 == Constrain Dof

0 == Don’t Constrain Dof

Note: The number of constraints at each node must be equal to the
number of Dof per node which was set at the beginning of the
mesh block. Example shown is for 2 Dof per node.

End with zeros.

Command to set constraints on a plane.

idir coord jcon
idir = direction of normal to plane in (x1,x2,x3) space
coord = coordinate of plane
jcon = restraint direction

end with zeros

exit this input section

2. Material properties

This section defines the material library and which elements have which material proper-
ties. Flex94 was designed to handle various types of constitutive definitions (eg. 2D, 3D, proper-
ties for a beam, etc.) However, for textile analysis only one option is relevant - *3D’. This option
requires the 3D elastic properties to be given as shown below. For 2D analysis the 3D properties
which are input are used to determine the 2D properties for plane strain analysis.

3D’ Command to start reading of 3D material properties.

1 Material group number used later in assigning properties to elements.
206.9€9 5.171€95.171e9 Young’s Moduli (E4y Epp Egg)

.25 .25 .25 Poisson’s Ratios (v, Vi3 Vq3)

2.386e9 2.386e9 2.386€9 Shear Moduli (G12 G13 G23)

0 Rotation about z-axis (z-axis is out of plane for 2D problems)
000 (thermal expansion coefficients...not used or implemented)
000 (moisture expansion coefficients...not used or implemented)
2 Next material group

5.171e9 206.9€9 5.171e9

.00625 .25 .25

2.386e9 2.386e9 2.386e9

0000000

3

3.45¢9 3.45e9 3.45e9

.35.35 .35



1.28e9 1.28e9 1.28e9

0000000

0 Give zero as material group number to end input.
’end_material_input’ End input of material properties

"loop’ Command to start specifing material group.

31431 MaterialGroupNumber FirstElement LastElement Increment
12434

13434

0000 End with zeroes

‘end_pick’ End selection of material properties for elements

Comments: For a mesh consisting of macro elements only, there is no need to input material
properties. (It will do no harm, but the data will not be used.) Hence, the following lines are suf-
ficient for the material property section.

’end_material_input’
’end_pick’

3. Macro Element Input

Most of the data for macro elements will be specified in another file, as described shortly.
The following must be included in the main input file if macro elements are being used.

‘read_macro_mesh’ Command to start reading of macro element mesh.
851 macro element type 851-899: single field
801-849: multi-field
103 95 2 NumberOfNodes NumberOfElements NumberOfDimensions
2 NumberOfDotPerNode
2500 500 length of connectivity array  length of coordinate array

Minimum requirements are:
Connectivity: numberOfElements * (numberOfNodesPerElement + 9)+1
Coordinates: numberOfNodes * numberOfDimensions + 2

12 number of elements in macro element submesh
2 number of degrees of freedom per node in macro element submesh
title’
‘alternate_input’
‘name’ name of alternate input file

(what is in this file will be described in section “6”)
Repeat above commands of section 3 for each type of macro element

to be used.



‘initmacro’
2 NumberOfMacroElementTypes
1 2 List of elements which need to be initialized

4. Miscellaneous Options

Element Material Rotation Angle: For the analysis of textile composites, the material proper-
ties of the elements making up the tow are the same in the material coordinate system. These
properties must be transformed to the global coordinate system. Flex94 allows the user to specify
the angular orientation of the elements. For 2D, the user can specify the angle of rotation for an
entire element only. For 3D, however, Flex94 also allows the user to specify the angle of rotation
for each node in an element. The angle of rotation may be specified using three different com-
mands: ’angles2d’, ’angles3d’, and ’angles_multiple’. The angles are specified in terms of de-
grees.

Example: Description;

‘angles2d’ Command allows the user to specify the angles for a 2d analysis. When
1 0.00 using this option, angles specify the rotation about the z-axis.
2 5.17892 (Out of plane.) Angles must be specified for all elements in the
3 10.28684 mesh and are positive for a clock-wise rotation.

4 15.34983 ElementNumber RotationAboutZAxis

42 -5.17892

43 0.000

Example: Description;

‘angles3d’ Command allows the user to specify the angle and axis of rotation for 3D
11 0.00 analysis. Again, the angles must be specified for all elements.
2 2 5.857 ElementNumber AxisOfRotation Angle

3 3 6.449

421 0.00

432248

"angles_multiple’ Command allows the user to specify the angles of rotation for 3d.
1220 ElementNumber AxisOfRotation NumberOfAnglesForElement
6.724670 Angle(1)

7.294361 Angle(2)

4.009413 Angle(19)

0.000000 Angle(20)

2120 Angle(n) corresponds to the rotation at the nth node specified



5.877652 in the connectivity of the element.
2.332992

42 1 20 0.000 0.000 O....
43 2 20 2.489 2.476 2.4..

It is often more convienient, when specifing the material rotation angles for elements, to
use "alternalte_input’ to allow the angles to be kept in another file. When doing this, remember to
put ’standard_input’ at the end of the file to let Flex94 return to the original input file.

Multipoint Constraints: Another miscellaneous option which Flex94 allows, is the specification
of multipoint constraints. When specifying multipoint constraints, the user must specify a master
node, slave node, the particular degree of freedom (dof) to constrain, and a difference between the
two dof’s. The particular dof being constrained (ie. the slave node) cannot have been previously
constrained.

It is also possible to apply a mpc such that the displacement of the slave node dof is the
opposite that of the master node dof. This is done by putting a minus sign in front of the master
node as shown in the following example.

‘mpc’ Command to start reading of multipoint constraints.

2 11 0.000 SlaveNode MasterNode DofToConstrain Difference

311 0.000

4 -1 2 0.150 This line constrains Node 4 dof 2 to the negative displacement of Node
100 -1 10.000 1 dof 2 plus a difference of 0.150

101 100 1 0.000

102 -120.150

0000 Use four zeros to signal end of multipoint constraints.

Ending Miscellaneous Options: This command must appear at the end of the Miscellaneaous
Options section. It is shown below.

‘end_of_misc_options' Command to end Miscellaneous Options. (NOT OPTIONAL!)
As stated earlier, it may be more convienient to keep sections of miscellaneous options in

another file. This can be done using ’alternate_input’ with ’standard_input’ as explained in sec-
tion 1.

5. Loads

Various types of loads can be applied with Flex94. Some of these include the specification
of nodal displacements and point forces. All the command options in this section are optional.



’alternate_input’ may be used at any time where a command can be accepted. Remember to re-
turn to the original input file with ’standard_input’.

Point Forces: Point forces allow the user to specify the nodal force at a node.

‘point’ Command to start reading of point forces.

1 1e7 1 NodeNumber Force DofNumberForNode
3 2.345e6 2

87 6.456e8 1

000 End reading of point forces with three zeros.

Displacements: Displacements may also be specified at specific degrees of freedom. In the input
of the mesh in section 1, constraints can be input. This reduces the actual size of the problem.
Specified non-zero displacements are also a type of constraint, but in order to reduce the problem
size, the dof must be constrained in the mesh section also.

‘displacement’ Command to start reading of displacements.

1 3.13e-3 2 NodeNumber Displacement DofNumberForNode
1.025 1

2 0.56e-2 2

87 0.13e-21

102 0.13e-21

000 End reading of displacements with three zeros.

Plane Displacements: Displacements may be applied to an entire plane in a particular direction.
This is known as a plane displacement. This option works in conjunction with setting plane con-
straints in the mesh input section.

"planeDisplacement’ Command to start reading of base displacements.

1-15 .015 2 CoordinateNumber CoordinateValue Displacement Direction

1-15 .010 1 <---This line indicates that on the plane x=-1.5 specify a displacement of
2 -2.0 -013 2 0.010 in the x-direction.

0000 End reading of base displacements with four zeros.

Linearly Varying Displacements on a Plane: Displacements may be applied to an entire plane
so that the variation of the specified displacements changes linearly with the value of the coordi-
nates which are parallel to the plane. For example, one may want to specify an x displacement on
a plane x=1.5 which varies linearly with y. Displacements are calculated as d; = a y; + b where a
and b are specified by the user and d; and y; are the calculated displacement and y coordinate at a
specific node on the x=1.5 plane.



‘linearPlaneDisplacement’ Command to start reading of linearly varying plane displacements.

11512 .1 -05 This line specifies that on the plane x4=1.5, a displacement in the x4
2-1511 .01 -.01 direction given by d; = .1 x5; - .05 is being specified at each
node i on the plane.

000000 End reading of linearly varying plane displacements with six zeros.

To end reading of loads, ’end_loads’ must be at the end of the loads section.

6. Seperate Input File For Macro Element Data

Much of this file is identical to the sections described above. Hence, references will be made to

the sections above rather than repeating all of the details.

Mesh input block.......refer to Section 1:
Comments:
1. Do not input any restraint information.
2. The nodal coordinates must be normaized coordinates (eg. they must range

between -1 and 1.)

Material properties block.......refer to Section 2:
numberOfNodesInMacroElement: The number of nodes in the macro element must be
specified. It is not the number of nodes in the submesh.
Miscellaneous options block.......refer to Section 4:
Comments:
1. The material rotation angles for the elements in the submesh is input in this
section.

2. Do not apply multipoint constraints to a macro element mesh.

7. Failure Analysis

This section describes the data required for progressive failure analysis.

As described in ‘Mesh Input.....section 1,” the analysis type ‘LINEAR’ has to be replaced with
either ‘SELECT’ or ‘NSELECT"’ option. The option ‘SELECT’ represents the ‘selective discount
method’ and ‘NSELECT’ represents the ‘Non-Selective discount method.” One additional input
file is required. It is named ‘strengthdata’. It contains a list of strength values for each of the
material groups used.



3 NumberOfMaterialGroups
500 50 50 60 60 60 (tensile strength) G41,0,5,033,(shear strength) 615,013,053,
-500 -50 -50 (compressive strength)0¢,022,033

‘When progressive failure analysis is performed, the following additional files are created.
‘stressstrain’ : Data file used to plot ‘nominal stress vs nominal strain’ curve.

1 0.0e6 0.00 ReferenceNumber, NominalStressValue,
2 1.3e6 0.10 NominalStrainValue (percent)

‘damagefield’: Damage progression sequence is recorded. This file may be used to study the fail-
ure mechanism and used for graphical simulation of failure progression.

11 ElementNumber, MaterialGroupNumber

001043 Each row represents an integration point of the element. Each column
000000 represents a stress component. Gy1,020,033,012,013,023 is the order
650000 the stress components for each row. The numbers 1,4, and 3

correspond to the first , fourth and third points on the stress-strain curve.

21
870000

‘fcontour.n’ n = 1,2,..., number of points on the stress-strain curve : This file
contains the contour data required to plot failure contours for each point on the stress-strain curve.
The file format is the same as the stress contours file ‘stress’.
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Plot94

User’s Manual

Executable: Mesh.app (double click to start)

The program Mesh.app was used in debugging finite element meshes and postprocessing the
results from finite element analyses. The program was developed for the NeXTStep operating
system, which is available for Intel personal computers and Hewlett Packard workstations. It is
assumed that the user of this program is familiar with NextStep.

The primary functions of the plotting program are:
1. Plot a finite element mesh.
2. Plot a deformed finite element mesh (ie. with scaled nodal displacements added to
original nodal coordinates.)
3. Plot stress contour lines.
4. Plot stress contour bands.

This program was designed to work with the finite element program “Flex94”. In brief, the
current version of the plotting program supports the following:

Mesh plotting for the following elements
truss
frame
triangular and quadrilateral 2D elements with any number of nodes
20-node hexahedral elements

Contour plotting for the following elements
4 and 8 node quadrilateral elements
20-node hexagonal elements

The following pages describe the use of Plot94. There are two aspects to using the program:
preparation of the input files and interaction with the graphical user interface to obtain the type of
plot desired. This manual will begin with a discussion of the input files followed by a description
of the graphical user interface (GUI).



Input Files

This section describes the following types of input files:
1. Mesh file
2. Nodal displacement file
3. Contour data file
In each case a fragment of a typical input file will be listed and explained. The actual input data is
in small type and the comments are in italics.

Mesh file:
1941 384 3 numberOfNodes numberOfElements numberOfDimensions
1 -75000 -65625 -.5000 node# coordinates (for 2D only xy coordinates are needed.)

2 -.65625 -75000 -.5000
3 -75000 -.75000 -.5000
4 -75000 -65625 -.4951
5 -75000 -75000 -3750
6 -.65625 -75000 -.4951

« element#t numberOfNodesPerElement  connectivity
1203 4111335323156 14 38 34 23 24 27 29 43 40 39 25
2 2031 32 35 37 112 110 108 33 34 38 111 107 39 40 43 45 120 118 116 41
32011125 53 63 36 35 13 14 54 66 38 27 28 59 61 66 44 43 29
4 2035 36 63 65 124 114 112 37 38 66 123 111 43 44 67 69 128 122 12 45
5 2051 52 147 149 159 64 63 53 54 150 ...

Optional input for mesh file:

world input range of screen coordinate system
0.00 0.00 lowerLeftX lowerLeftY
1.500 1.500 upperRightX upperRightY
(if left out, program will automatically pick coordinates)
inactive deactivate elements ( elements will not be plotted)
1641 first last increment
129 3841 next group to deactivate
000 end option with three zeros
active activate elements
24321
000
set.colors Set Element Colors
51 321 colorlndex first last increment

(0<= colorindex<12)
colorindex corresponds to material group number

0000 end with four zeros

elementNodal Values input contour data (see format in Contour Data File Section)
set.values Sets values for each element. Use Shade Elements to view.
32 numberOfColumnsOfData  selectedColumn

1 2.334 4.566 1.13¢9
22567 4.877 1.15¢9

total # of columns = numberOfColumnsOfData+1
If selectedColumn<0, absolute value of data is input.
Range is selected automatically.



fix.values Fix Values for each element. Use Shade Elements to view.

32 numberOfColumnsOfData  selectedColumn
0 105 minValue maxValue
1 2.334 4.566 1.13¢9 If selectedColumn<0, absolute value of data is input

2 2567 4.877 1.15¢9

Nodal displacement file:

1-79272E-24 .13041E-02 -.42810E-22 nodeNum (u,v,[w]) displacement
2 .87106E-02 -.97213E-24 -.43845E-22 (w displacement is optional in 2D)
3 -.12200E-22 -.24332E-23 .10482E-22

4 37197E-22 .11482E-02 -30051E-02

5 .42536E-22 .13039E-22 -.23021E-01

6 .83812E-02 .11663E-22 -36294E-02

7 .19218E-24 .54321E-02 .13092E-22

8 .15420E-23 .10875E-01 -.12807E-22

9 -.14467E-23 .456728-02 -.52301E-02

10 .11192E-01 .63668E-02 -.49632E-22

Contour data file:
This section may be included in the mesh file or as a stand alone file. To include this in the mesh
file, the option elementNodalValues must be used.

(elementNodal Values) Only include if in the mesh file.
3 Number of columns
1 Column to be input
fixed (These 2 lines explained in Scaling options.)
-4e7 4el
1 1 elementNumber  materialGroupNumber

.1807296E+08 -.3453916E+06 -.5935107E+08 There is one line of data for each node in each element.
.1881153E+08 .2379351E+07 -.5971771E+08

Scaling Options:

A scaling option must be given when the data is read in so that the plotting program will know
how to draw contours. The above data uses the fixed option which allows the user to specify the
minimum value (-4e7 in the above data) and maximum values (4e7) when the data is read in. Itis
also possible to specify that the program automatically pick the minimum and maximum values
when reading in the data. There are several options for doing this. These are auto, group, and
active.

- auto tells the program to automatically pick the min. and max. from all of the input data.
There is no extra data necessary for this command.

- group allows the user to specify that min. and max. value be picked from a specific
material group. On the next line, the material group number to scale must be specified.

- active allows the program to pick the min. and max. value from all the active elements.
No extra data is required for this option.

It is also possible to scale the data after it is read in by changing the Data Range fields in the
bottom right hand corner of the primary panel. However, the data being read in must still have
one of the scaling options specified in the file.



Interface

One part of the interface is the primary panel, which includes the plotting window, a collection of
buttons, toggle switches, and text fields (see Figure 1). The operation of each is documented
below. Figure 2 shows the menu panels. The one labeled “Mesh” is the main panel. The others
are activated through the “Mesh” panel as indicated by the lines joining the panels. The menus
are self-explanatory except for the one labeled “Modify List of Elements to be Plotted”. This
panel permits one to remove a collection of elements or to add them back. There are three meth-
ods provided for identifying the particular elements. These are described below:

1. Modify by Volume: Select elements whose centroids lie within the specified xyz coordi-
nate ranges.

2. Modify by Group Number: Select elements in the specifed group.

3. Modify by Loop List: Select elements “First” to “Last” with an “Increment” or stride. For
example, if First, Last, and Increment are 1,10,2, respectively, then the selected elements will be
1,3,5,7.9.

Description of Buttons, Toggles, and Text Fields on Primary Panel:

Redraw Redraw mesh using current settings.

Zoom In Zoom in on center portion of plot (magnification = 4x).

Zoom Out Zoom out (reduction = 4x).

Node Numbers Label nodes.

Element Numbers Label elements.

Shade Elements Color element according to the specified color group.

Label Intensity Label element according to the specified material group.

FontScale Magnification factor for default font size.

World Coordinates Range of world coordinates in plotting window.

Rotation Rotation about z,x, and y axes - in that order followed by incremental

rotaion about the z axis. When all angles =0, the z-axis points to the
top of the window and the y-axis points to the right side. A right-
handed coordinate system is used.



Magnification

Use Displacements
AutoWorld

To PostScript File

Monochrome/Color

Contouring
Draw Contours
Label Contours

Lines
Bands
Outline Elements

Data Range
Min
Max

Magnification factor to apply to the nodal displacements.

Click on to plot deformed mesh. Displacements are read in using the
menu option Displacements under Document.

Allows program to automatically specify world coordinates for
window based on size of mesh.

Click on to create PostScript file rather than draw to screen. This
function creates a much smaller file than saving with the default print
command. Greyscale is always output. By changing one parameter
in file, it can be converted to color. (Directions are included in the
PostScript file.)

Toggles display between color and greyscale.

(All options take effect on next Redraw.)

Click on to draw contours.

Click on to label contour lines if just Lines selected or draw legend if
Bands are selected.

Click on to draw contour lines.

Click on to draw contour bands.

Click on to draw element bondaries when contouring. Element

boundaries are always drawn when contouring is turned off.

Lower limit for contour data.
Upper limit for contour data.



Figure 1: Primary panel including the plot window.



Elements

Figure 2: Menu panels with connections.



Installation



Installation of Source Code and Samples

The PC DOS formatted distribution media contains the following four compressed tar files:
pwmeshge.z
flex94.z
plot94.z
samples.z

After copying these files to a UNIX computer, these files must be renamed as

pwmeshge.Z
flex94.Z
plot94.Z
samples.Z

The files can then be uncompressed using the command
uncompress *
Next the files in each tar file are extracted using the commands

tar -xvf pwmeshge
tar -xvf flex94

tar -xvf plot94

tar -xvf samples

The following four sub-directories are created in the current directory:

PWMeshGen
Flex94
Plot94
Samples

Creation of Executables

Change to the directory containing the four sub-directories listed above, then execute the
following commands. The words in italics are comments, not commands.

cd Flex94/Control
make
The executable is named “fe” and is located in the current directory. It may be moved to

any location desired.
cd ..



cd PWMeshGen

follow the instructions in the file “readme”

make

The executable is named “PWMeshGen” and is located in the directory one level above
the current directory. The executable should not be moved.

cd ..

cd Plot94

make
This plotting software only compiles and runs on systems running NextStep

Sample Input

Input and output files for six problems are included. These are in the subdirectories Sam-
plel - Sample6. Comments are included in the subdirectories which describe each sample.



